Clin Colon Rectal Surg 2024; 37(03): 146-156
DOI: 10.1055/s-0043-1770383
Review Article

Current Trends in Vaccine Development for Hereditary Colorectal Cancer Syndromes

Charles M. Bowen
1   Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Krishna M. Sinha
1   Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
,
Eduardo Vilar
1   Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
› Author Affiliations
Funding E.V. has a consulting or advisory role with Janssen Research and Development and Recursion Pharma. He has received research support from Janssen Research and Development.

Abstract

The coming of age for cancer treatment has experienced exponential growth in the last decade with the addition of immunotherapy as the fourth pillar to the fundamentals of cancer treatment—chemotherapy, surgery, and radiation—taking oncology to an astounding new frontier. In this time, rapid developments in computational biology coupled with immunology have led to the exploration of priming the host immune system through vaccination to prevent and treat certain subsets of cancer such as melanoma and hereditary colorectal cancer. By targeting the immune system through tumor-specific antigens—namely, neoantigens (neoAgs)—the future of cancer prevention may lie within arm's reach by employing neoAg vaccines as an immune-preventive modality for hereditary cancer syndromes like Lynch syndrome. In this review, we discuss the history, current trends, utilization, and future direction of neoAg-based vaccines in the setting of hereditary colorectal cancer.



Publication History

Article published online:
31 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021; 18 (04) 215-229
  • 2 Yarchoan M, Johnson III BA, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17 (04) 209-222
  • 3 Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol 2018; 18 (03) 183-194
  • 4 Cafri G, Gartner JJ, Zaks T. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest 2020; 130 (11) 5976-5988
  • 5 Ott PA, Hu Z, Keskin DB. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017; 547 (7662): 217-221
  • 6 Keskin DB, Anandappa AJ, Sun J. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019; 565 (7738): 234-239
  • 7 Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science 2018; 359 (6382): 1355-1360
  • 8 Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019; 4: 7
  • 9 Kopetz S. et al. SO-11 KISIMA-01 trial: Safety, tolerability and immunogenicity of ATP128 with or without ezabenlimab (BI 754091) in patients with stage IV colorectal cancer – preliminary results from a phase 1b study. Ann Oncol 2021; 32: S206-S207
  • 10 Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 2015; 125 (09) 3413-3421
  • 11 Robbins PF, Lu YC, El-Gamil M. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19 (06) 747-752
  • 12 Gebert J, Gelincik O, Oezcan-Wahlbrink M. et al. Recurrent frameshift neoantigen vaccine elicits protective immunity with reduced tumor burden and improved overall survival in a Lynch syndrome mouse model. Gastroenterology 2021; 161 (04) 1288-1302.e13
  • 13 Kloor M, Reuschenbach M, Pauligk C. et al. A frameshift peptide neoantigen-based vaccine for mismatch repair-deficient cancers: a phase I/IIa clinical trial. Clin Cancer Res 2020; 26 (17) 4503-4510
  • 14 Ott PA, Hu-Lieskovan S, Chmielowski B. et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 2020; 183 (02) 347-362.e24
  • 15 Martin SD, Brown SD, Wick DA. et al. Low mutation burden in ovarian cancer may limit the utility of neoantigen-targeted vaccines. PLoS One 2016; 11 (05) e0155189
  • 16 Hilf N, Kuttruff-Coqui S, Frenzel K. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019; 565 (7738): 240-245
  • 17 Kimura T, McKolanis JR, Dzubinski LA. et al. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 2013; 6 (01) 18-26
  • 18 Gatti-Mays ME, Redman JM, Donahue RN. et al. A phase I trial using a multitargeted recombinant adenovirus 5 (CEA/MUC1/Brachyury)-based immunotherapy vaccine regimen in patients with advanced cancer. Oncologist 2020; 25 (06) 479-e899
  • 19 Gabitzsch ES, Tsang KY, Palena C. et al. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget 2015; 6 (31) 31344-31359
  • 20 Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: tumor-associated antigens vs neoantigens. World J Gastroenterol 2018; 24 (48) 5418-5432
  • 21 Lesterhuis WJ, De Vries IJ, Schreibelt G. et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 2010; 30 (12) 5091-5097
  • 22 Lesterhuis WJ, de Vries IJ, Schuurhuis DH. et al. Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 2006; 17 (06) 974-980
  • 23 Pedersen SR, Sørensen MR, Buus S, Christensen JP, Thomsen AR. Comparison of vaccine-induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: implications for cancer immunotherapy. J Immunol 2013; 191 (07) 3955-3967
  • 24 Overwijk WW. Cancer vaccines in the era of checkpoint blockade: the magic is in the adjuvant. Curr Opin Immunol 2017; 47: 103-109
  • 25 Budhu S, Loike JD, Pandolfi A. et al. CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J Exp Med 2010; 207 (01) 223-235
  • 26 Parkhurst MR, Yang JC, Langan RC. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19 (03) 620-626
  • 27 Bommi PV, Bowen CM, Reyes-Uribe L. et al. The transcriptomic landscape of mismatch repair-deficient intestinal stem cells. Cancer Res 2021; 81 (10) 2760-2773
  • 28 Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011; 6: 479-507
  • 29 Cerretelli G, Ager A, Arends MJ, Frayling IM. Molecular pathology of Lynch syndrome. J Pathol 2020; 250 (05) 518-531
  • 30 Hirama T, Tokita S, Nakatsugawa M. et al. Proteogenomic identification of an immunogenic HLA class I neoantigen in mismatch repair-deficient colorectal cancer tissue. JCI Insight 2021; 6 (14) 146356
  • 31 Osterbye T, Nielsen M, Dudek NL. et al. HLA class II specificity assessed by high-density peptide microarray interactions. J Immunol 2020; 205 (01) 290-299
  • 32 Wells DK, van Buuren MM, Dang KK. et al; Tumor Neoantigen Selection Alliance. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 2020; 183 (03) 818-834.e13
  • 33 Kalaora S, Wolf Y, Feferman T. et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. Cancer Discov 2018; 8 (11) 1366-1375
  • 34 Hernandez-Sanchez A, Grossman M, Yeung K, Sei SS, Lipkin S, Kloor M. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J Immunother Cancer 2022; 10 (06) e004416
  • 35 Bohaumilitzky L, von Knebel Doeberitz M, Kloor M, Ahadova A. Implications of hereditary origin on the immune phenotype of mismatch repair-deficient cancers: systematic literature review. J Clin Med 2020; 9 (06) E1741
  • 36 Therkildsen C, Jensen LH, Rasmussen M, Bernstein I. An update on immune checkpoint therapy for the treatment of Lynch syndrome. Clin Exp Gastroenterol 2021; 14: 181-197
  • 37 Kloor M, Michel S, Buckowitz B. et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 2007; 121 (02) 454-458
  • 38 Clendenning M, Huang A, Jayasekara H. et al; investigators from the Melbourne Collaborative Cohort Study and the Australasian Colorectal Cancer Family Registry Cohort. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam Cancer 2018; 17 (01) 91-100
  • 39 Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P. Selection for beta 2-microglobulin mutation in mismatch repair-defective colorectal carcinomas. Curr Biol 1996; 6 (12) 1695-1697
  • 40 Chang K, Taggart MW, Reyes-Uribe L. et al. Immune profiling of premalignant lesions in patients with Lynch syndrome. JAMA Oncol 2018; 4 (08) 1085-1092
  • 41 Reyes-Uribe L, Wu W, Gelincik O. et al. Naproxen chemoprevention promotes immune activation in Lynch syndrome colorectal mucosa. Gut 2021; 70 (03) 555-566
  • 42 Roy HK, Turzhitsky V, Wali R. et al. Spectral biomarkers for chemoprevention of colonic neoplasia: a placebo-controlled double-blinded trial with aspirin. Gut 2017; 66 (02) 285-292
  • 43 Giannakis M, Mu XJ, Shukla SA. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep 2016; 17 (04) 1206
  • 44 Mandal R, Samstein RM, Lee KW. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 2019; 364 (6439): 485-491
  • 45 Schwitalle Y, Kloor M, Eiermann S. et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 2008; 134 (04) 988-997
  • 46 Ozirmak Lermi N, Gray SB, Bowen CM. et al. Comparative molecular genomic analyses of a spontaneous rhesus macaque model of mismatch repair-deficient colorectal cancer. PLoS Genet 2022; 18 (04) e1010163
  • 47 Leoni G, D'Alise AM, Cotugno G. et al. A genetic vaccine encoding shared cancer neoantigens to treat tumors with microsatellite instability. Cancer Res 2020; 80 (18) 3972-3982
  • 48 D'Alise AM, Leoni G, Cotugno G. et al. Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nat Commun 2019; 10 (01) 2688
  • 49 Overman M, Fakih M, Le D. 410 Phase I interim study results of Nous-209, an off-the-shelf immunotherapy, with pembrolizumab, for the treatment of tumors with a deficiency in mismatch repair/microsatellite instability (dMMR/MSI). J Immunother Cancer 2021; 99 (suppl 2): A1-A1054
  • 50 Peng S, Zaretsky JM, Ng AHC. et al. Sensitive detection and analysis of neoantigen-specific T cell populations from tumors and blood. Cell Rep 2019; 28 (10) 2728-2738.e7
  • 51 Sibener LV, Fernandes RA, Kolawole EM. et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 2018; 174 (03) 672-687.e27
  • 52 Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021; 21 (06) 360-378
  • 53 Sahin U, Derhovanessian E, Miller M. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017; 547 (7662): 222-226
  • 54 Kenter GG, Welters MJ, Valentijn AR. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009; 361 (19) 1838-1847
  • 55 van Poelgeest MIE, Welters MJ, Vermeij R. et al. Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res 2016; 22 (10) 2342-2350
  • 56 Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res 2017; 27 (01) 74-95
  • 57 Westdorp H, Fennemann FL, Weren RD. et al. Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunol Immunother 2016; 65 (10) 1249-1259
  • 58 Sahin U, Oehm P, Derhovanessian E. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020; 585 (7823): 107-112
  • 59 Das K, Belnoue E, Rossi M. et al. A modular self-adjuvanting cancer vaccine combined with an oncolytic vaccine induces potent antitumor immunity. Nat Commun 2021; 12 (01) 5195
  • 60 Belnoue E, Mayol JF, Carboni S. et al. Targeting self and neo-epitopes with a modular self-adjuvanting cancer vaccine. JCI Insight 2019; 5 (11) e127305
  • 61 Belnoue E, Leystra AA, Carboni S. et al. Novel protein-based vaccine against self-antigen reduces the formation of sporadic colon adenomas in mice. Cancers (Basel) 2021; 13 (04) 845
  • 62 Yurgelun MB, Hampel H. Recent advances in Lynch syndrome: diagnosis, treatment, and cancer prevention. Am Soc Clin Oncol Educ Book 2018; 38: 101-109
  • 63 Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP. Milestones of Lynch syndrome: 1895-2015. Nat Rev Cancer 2015; 15 (03) 181-194
  • 64 Hampel H, Stephens JA, Pukkala E. et al. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology 2005; 129 (02) 415-421