Facial Plast Surg 2023; 39(05): 556-563
DOI: 10.1055/s-0043-1770962
Original Article

Bone Graft Substitutes and Enhancement in Craniomaxillofacial Surgery

Dhruv Patel
1   Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, New York
,
Sherard A. Tatum
2   Department of Otolaryngology and Pediatrics, SUNY Upstate Medical University, Syracuse, New York
› Author Affiliations

Abstract

Critical-sized bone defects are a reconstructive challenge, particularly in the craniomaxillofacial (CMF) skeleton. The “gold standard” of autologous bone grafting has been the work horse of reconstruction in both congenital and acquired defects of CMF skeleton. Autologous bone has the proper balance of the protein (or organic) matrix and mineral components with no immune response. Organic and mineral adjuncts exist that offer varying degrees of osteogenic, osteoconductive, osteoinductive, and osteostimulative properties needed for treatment of critical-sized defects. In this review, we discuss the various mostly organic and mostly mineral bone graft substitutes available for autologous bone grafting. Primarily organic bone graft substitutes/enhancers, including bone morphogenic protein, platelet-rich plasma, and other growth factors, have been utilized to support de novo bone growth in setting of critical-sized bone defects. Primarily mineral options, including various calcium salt formulation (calcium sulfate/phosphate/apatite) and bioactive glasses have been long utilized for their similar composition to bone. Yet, a bone graft substitute that can supplant autologous bone grafting is still elusive. However, case-specific utilization of bone graft substitutes offers a wider array of reconstructive options.



Publication History

Article published online:
20 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Waterhouse N. The history of craniofacial surgery. Facial Plast Surg 1993; 9 (02) 143-150
  • 2 Twigg SRF, Wilkie AOM. New insights into craniofacial malformations. Hum Mol Genet 2015; 24 (R1): R50-R59
  • 3 Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 2015; 11 (01) 45-54
  • 4 Raghuram A, Singh A, Chang DK, Nunez M, Reece EM. Bone grafts, bone substitutes, and orthobiologics: applications in plastic surgery. Semin Plast Surg 2019; 33 (03) 190-199
  • 5 Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; (205) 299-308
  • 6 Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8 (04) 114-124
  • 7 Elsalanty ME, Genecov DG. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2009; 2 (03) 125-134
  • 8 Shnayder Y, Girod DA, Tsue T. Free tissue transfer. In: Cummings Otolaryngology: Head and Neck Surgery. 7 ed. Chap. 78.. Philadelphia: Elsevier; 2021: 1098-1118
  • 9 Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001; 10 Suppl 2 (Suppl. 02) S96-S101
  • 10 Costantino PD, Hiltzik D, Govindaraj S, Moche J. Bone healing and bone substitutes. Facial Plast Surg 2002; 18 (01) 13-26
  • 11 Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin 2012; 28 (04) 457-468
  • 12 Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C 2021; 130: 112466
  • 13 Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2017; 2 (04) 224-247
  • 14 De Leonardis D, Pecora GE. Prospective study on the augmentation of the maxillary sinus with calcium sulfate: histological results. J Periodontol 2000; 71 (06) 940-947
  • 15 Xu HHK, Weir MD, Simon CG. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 2008; 24 (09) 1212-1222
  • 16 Losquadro WD, Tatum SA, Allen MJ, Mann KA. Polylactide-co-glycolide fiber-reinforced calcium phosphate bone cement. Arch Facial Plast Surg 2009; 11 (02) 104-109
  • 17 Zwingenberger S, Nich C, Valladares RD, Yao Z, Stiehler M, Goodman SB. Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs 2012; 26 (04) 245-256
  • 18 Ghayor C, Weber FE. Osteoconductive microarchitecture of bone substitutes for bone regeneration revisited. Front Physiol 2018; 9: 960
  • 19 Pastorino D, Canal C, Ginebra M-P. Multiple characterization study on porosity and pore structure of calcium phosphate cements. Acta Biomater 2015; 28: 205-214
  • 20 Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 2017; 10 (04) 334
  • 21 Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact 2017; 17 (03) 114-139
  • 22 Verret DJ, Ducic Y, Oxford L, Smith J. Hydroxyapatite cement in craniofacial reconstruction. Otolaryngol Head Neck Surg 2005; 133 (06) 897-899
  • 23 Mathur KK, Tatum SA, Kellman RM. Carbonated apatite and hydroxyapatite in craniofacial reconstruction. Arch Facial Plast Surg 2003; 5 (05) 379-383
  • 24 Singh KA, Burstein FD, Williams JK. Use of hydroxyapatite cement in pediatric craniofacial reconstructive surgery: strategies for avoiding complications. J Craniofac Surg 2010; 21 (04) 1130-1135
  • 25 Pryor LS, Gage E, Langevin C-J. et al. Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2009; 2 (03) 151-160
  • 26 Chaves MD, de Souza Nunes LS, de Oliveira RV. et al. Bovine hydroxyapatite (Bio-Oss(®)) induces osteocalcin, RANK-L and osteoprotegerin expression in sinus lift of rabbits. J Craniomaxillofac Surg 2012; 40 (08) e315-e320
  • 27 de Oliveira RS, Brigato R, Madureira JF. et al. Reconstruction of a large complex skull defect in a child: a case report and literature review. Childs Nerv Syst 2007; 23 (10) 1097-1102
  • 28 Rezaei M, Farhadian M, Rashidi AM, Saeidipour M, Manshaei M, Rezaee M. Nano-biphasic calcium phosphate ceramic for the repair of bone defects. J Craniofac Surg 2018; 29 (06) e543-e548
  • 29 Moreira Filho O, Wykrota FHL, Lobo SE. Restoring facial contour and harmony using biphasic calcium phosphate bioceramics. Plast Reconstr Surg Glob Open 2021; 9 (04) e3516
  • 30 Jan A, Sándor GKB, Brkovic BBM. et al. Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109 (01) 59-66
  • 31 Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S. The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes. Int J Med Sci 2011; 8 (02) 114-125
  • 32 Elshahat A, Shermak MA, Inoue N, Chao EYS, Manson P. The use of Novabone and Norian in cranioplasty: a comparative study. J Craniofac Surg 2004; 15 (03) 483-489
  • 33 Välimäki VV, Aro HT. Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg 2006; 95 (02) 95-102
  • 34 Profeta AC, Huppa C. Bioactive-glass in oral and maxillofacial surgery. Craniomaxillofac Trauma Reconstr 2016; 9 (01) 1-14
  • 35 Crush J, Hussain A, Seah KTM, Khan WS. Bioactive glass: methods for assessing angiogenesis and osteogenesis. Front Cell Dev Biol 2021; 9: 643781
  • 36 Kaur G, Kumar V, Baino F. et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: state-of-the-art review and future challenges. Mater Sci Eng C 2019; 104: 109895
  • 37 Stoor P, Grénman R. Bioactive glass and turbinate flaps in the repair of nasal septal perforations. Ann Otol Rhinol Laryngol 2004; 113 (08) 655-661
  • 38 Sarin J, Grénman R, Aitasalo K, Pulkkinen J. Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann Otol Rhinol Laryngol 2012; 121 (09) 563-569
  • 39 Aitasalo KMJ, Piitulainen JM, Rekola J, Vallittu PK. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 2014; 36 (05) 722-728
  • 40 Vallittu PK, Posti JP, Piitulainen JM. et al. Biomaterial and implant induced ossification: in vitro and in vivo findings. J Tissue Eng Regen Med 2020; 14 (08) 1157-1168
  • 41 Brézulier D, Chaigneau L, Jeanne S, Lebullenger R. The challenge of 3D bioprinting of composite natural polymers PLA/bioglass: trends and benefits in cleft palate surgery. Biomedicines 2021; 9 (11) 1553
  • 42 Huang GJ, Zhong S, Susarla SM, Swanson EW, Huang J, Gordon CR. Craniofacial reconstruction with poly(methyl methacrylate) customized cranial implants. J Craniofac Surg 2015; 26 (01) 64-70
  • 43 Arora M, Chan EK, Gupta S, Diwan AD. Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop 2013; 4 (02) 67-74
  • 44 Manson PN, Crawley WA, Hoopes JE. Frontal cranioplasty: risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg 1986; 77 (06) 888-904
  • 45 Azmi A, Latiff AZ, Johari A. Methyl methacrylate cranioplasty. Med J Malaysia 2004; 59 (03) 418-421
  • 46 Fernandes da Silva AL, Borba AM, Simão NR, Pedro FLM, Borges AH, Miloro M. Customized polymethyl methacrylate implants for the reconstruction of craniofacial osseous defects. Case Rep Surg 2014; 2014: 358569
  • 47 Ghosh S, Pramanick D, Ray A, Burman R, Saha A. Fronto-orbital reconstruction using polymethyl methacrylate implant. Natl J Maxillofac Surg 2017; 8 (02) 153-156
  • 48 Scerrati A, Travaglini F, Gelmi CAE. et al. Patient specific polymethyl methacrylate customised cranioplasty using 3D printed silicone moulds: technical note. Int J Med Robot 2022; 18 (02) e2353
  • 49 Mudgalkar N, Ramesh KV. Bone cement implantation syndrome: a rare catastrophe. Anesth Essays Res 2011; 5 (02) 240-242
  • 50 Punchak M, Chung LK, Lagman C. et al. Outcomes following polyetheretherketone (PEEK) cranioplasty: systematic review and meta-analysis. J Clin Neurosci 2017; 41: 30-35
  • 51 Asaad M, Taslakian EN, Banuelos J. et al. Surgical and patient-reported outcomes in patients with PEEK versus titanium cranioplasty reconstruction. J Craniofac Surg 2021; 32 (01) 193-197
  • 52 Kim J-K, Lee S-B, Yang S-Y. Cranioplasty using autologous bone versus porous polyethylene versus custom-made titanium mesh : a retrospective review of 108 patients. J Korean Neurosurg Soc 2018; 61 (06) 737-746
  • 53 Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 2012; 64 (12) 1063-1077
  • 54 Bae HW, Zhao L, Kanim LEA, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine 2006; 31 (12) 1299-1306 , discussion 1307–1308
  • 55 Pietrzak WS, Woodell-May J, McDonald N. Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg 2006; 17 (01) 84-90
  • 56 Ryu B, Abraham C, Polido WD. Treatment of Mandibular Non-union Using Patient Specific Crib Cage Plates and Cellular Bone Allograft: A Case Report. Craniomaxillofacial Trauma & Reconstruction Open 2021;6
  • 57 Ho S, Nallathamby V, Ng H, Ho M, Wong M. A novel application of calcium phosphate-based bone cement as an adjunct procedure in adult craniofacial reconstruction. Craniomaxillofac Trauma Reconstr 2011; 4 (04) 235-240
  • 58 Salyer KE, Gendler E, Menendez JL, Simon TR, Kelly KM, Bardach J. Demineralized perforated bone implants in craniofacial surgery. J Craniofac Surg 1992; 3 (02) 55-62
  • 59 Shermak MA, Wong L, Inoue N, Nicol T. Reconstruction of complex cranial wounds with demineralized bone matrix and bilayer artificial skin. J Craniofac Surg 2000; 11 (03) 224-231
  • 60 Chao MT, Jiang S, Smith D. et al. Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method for reconstruction of large-scale defects in the pediatric calvaria. Plast Reconstr Surg 2009; 123 (03) 976-982
  • 61 Dvoracek LA, Lee JY, Ayyash A, Losee JE, Goldstein JA. Demineralized bone matrix and resorbable mesh bilaminate cranioplasty is ineffective for secondary reconstruction of large pediatric cranial defects. Plast Reconstr Surg 2020; 145 (01) 137e-141e
  • 62 Plum AW, Tatum SA. A comparison between autograft alone, bone cement, and demineralized bone matrix in cranioplasty. Laryngoscope 2015; 125 (06) 1322-1327
  • 63 Fisher DM, Wong JM, Crowley C, Khan WS. Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review. Curr Stem Cell Res Ther 2013; 8 (03) 260-268
  • 64 Yamaguchi A, Sakamoto K, Minamizato T, Katsube K, Nakanishi S. Regulation of osteoblast differentiation mediated by BMP, Notch, and CCN3/NOV. Jpn Dent Sci Rev 2008; 44 (01) 48-56
  • 65 Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 2016; 8 (06) a021899
  • 66 McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop 2007; 31 (06) 729-734
  • 67 Ramly EP, Alfonso AR, Kantar RS. et al. Safety and efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) in craniofacial surgery. Plast Reconstr Surg Glob Open 2019; 7 (08) e2347
  • 68 Skovrlj B, Koehler SM, Anderson PA. et al. Association between BMP-2 and carcinogenicity. Spine 2015; 40 (23) 1862-1871
  • 69 Cho M-J, Rohrich RJ. Level of evidence on platelet-rich plasma in plastic surgery. Plast Reconstr Surg Glob Open 2021; 9 (04) e3379
  • 70 Marukawa E, Oshina H, Iino G, Morita K, Omura K. Reduction of bone resorption by the application of platelet-rich plasma (PRP) in bone grafting of the alveolar cleft. J Craniomaxillofac Surg 2011; 39 (04) 278-283
  • 71 Gupta C, Mehrotra D, Mohammad S. et al. Alveolar bone graft with platelet rich plasma in cleft alveolus. J Oral Biol Craniofac Res 2013; 3 (01) 3-8
  • 72 Al-Hamed FS, Mahri M, Al-Waeli H, Torres J, Badran Z, Tamimi F. Regenerative effect of platelet concentrates in oral and craniofacial regeneration. Front Cardiovasc Med 2019; 6: 126
  • 73 Chan HL, McCauley LK. Parathyroid hormone applications in the craniofacial skeleton. J Dent Res 2013; 92 (01) 18-25
  • 74 Reynolds DG, Takahata M, Lerner AL, O'Keefe RJ, Schwarz EM, Awad HA. Teriparatide therapy enhances devitalized femoral allograft osseointegration and biomechanics in a murine model. Bone 2011; 48 (03) 562-570
  • 75 Novais A, Chatzopoulou E, Chaussain C, Gorin C. The potential of FGF-2 in craniofacial bone tissue engineering: a review. Cells 2021; 10 (04) 932
  • 76 Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16 (01) 47-61
  • 77 Zhang X, Jiang W, Xie C. et al. Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat Commun 2022; 13 (01) 5211