Semin Musculoskelet Radiol 2023; 27(05): 512-521
DOI: 10.1055/s-0043-1772170
Review Article

Imaging in Whiplash-Associated Disorders

1   Department of Medical and Molecular Imaging, VITAZ, Sint-Niklaas, Belgium
2   Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium
,
1   Department of Medical and Molecular Imaging, VITAZ, Sint-Niklaas, Belgium
2   Department of Radiology, University Hospital of Antwerp, Antwerp, Belgium
› Author Affiliations

Abstract

“Whiplash,” a term describing the severe acceleration and deceleration forces applied to the head, craniocervical junction (CCJ), and cervical spine during trauma, is one of the most frequent mechanisms of injury to the CCJ. The CCJ is a complex region at the transition of the cranium and the cervical spine, essential for maintaining craniocervical stability. In whiplash injuries, the CCJ may be compromised due to underlying ligamentous or, less frequently, osseous, intravertebral disk and/or muscular lesions. Imaging is crucial in detecting acute lesions but may also play a role in the follow-up of chronic pathology because soft tissue lesions and progressive disk pathology could contribute to a whiplash-associated disorder.



Publication History

Article published online:
10 October 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Spitzer WO, Skovron ML, Salmi LR. et al. Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine 1995; 20 (8, Suppl): 1S-73S
  • 2 Dvorak J, Panjabi M, Gerber M, Wichmann W. CT-functional diagnostics of the rotatory instability of upper cervical spine. 1. An experimental study on cadavers. Spine 1987; 12 (03) 197-205
  • 3 Kumagai G, Wada K, Tanaka S. et al. Prevalence of whiplash injury and its association with quality of life in local residents in Japan: a cross sectional study. J Orthop Sci 2022; 27 (01) 108-114
  • 4 Naqui SZ, Lovell SJ, Lovell ME. Underestimation of severity of previous whiplash injuries. Ann R Coll Surg Engl 2008; 90 (01) 51-53
  • 5 Erbulut DU. Biomechanics of neck injuries resulting from rear-end vehicle collisions. Turk Neurosurg 2014; 24 (04) 466-470
  • 6 Kasch H, Kongsted A, Qerama E, Bach FW, Bendix T, Jensen TS. A new stratified risk assessment tool for whiplash injuries developed from a prospective observational study. BMJ Open 2013; 3 (01) e002050
  • 7 Kasch H, Stengaard-Pedersen K, Arendt-Nielsen L, Staehelin Jensen T. Headache, neck pain, and neck mobility after acute whiplash injury: a prospective study. Spine 2001; 26 (11) 1246-1251
  • 8 Vincent MB. Cervicogenic headache: a review comparison with migraine, tension-type headache, and whiplash. Curr Pain Headache Rep 2010; 14 (03) 238-243
  • 9 Chung YS, Han DH. Vertebrobasilar dissection: a possible role of whiplash injury in its pathogenesis. Neurol Res 2002; 24 (02) 129-138
  • 10 Brown S. Effect of whiplash injury on accommodation. Clin Exp Ophthalmol 2003; 31 (05) 424-429
  • 11 Al-Khazali HM, Ashina H, Iljazi A. et al. Psychiatric sequelae following whiplash injury: a systematic review. Front Psychiatry 2022; 13: 814079
  • 12 Riascos R, Bonfante E, Cotes C, Guirguis M, Hakimelahi R, West C. Imaging of atlanto-occipital and atlantoaxial traumatic injuries: what the radiologist needs to know. Radiographics 2015; 35 (07) 2121-2134
  • 13 Mohamed MA, Majeske KD, Sachwani-Daswani G. et al. Impact of MRI on changing management of the cervical spine in blunt trauma patients with a ‘negative’ CT scan. Trauma Surg Acute Care Open 2016; 1 (01) e000016
  • 14 Van Goethem JWM, Maes M, Özsarlak O, van den Hauwe L, Parizel PM. Imaging in spinal trauma. Eur Radiol 2005; 15 (03) 582-590
  • 15 Van Geothem JW, Biltjes IGGM, van den Hauwe L, Parizel PM, De Schepper AMA. Whiplash injuries: is there a role for imaging?. Eur J Radiol 1996; 22 (01) 30-37
  • 16 Baumert B, Wörtler K, Steffinger D, Schmidt GP, Reiser MF, Baur-Melnyk A. Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magn Reson Imaging 2009; 27 (07) 954-960
  • 17 Peters B, Parizel PM, Van Goethem JW. Age-related changes to the craniocervical ligaments in asymptomatic subjects: a prospective MR study. Eur Spine J 2020; 29 (05) 1029-1035
  • 18 Dickman CA, Mamourian A, Sonntag VK, Drayer BP. Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability. J Neurosurg 1991; 75 (02) 221-227
  • 19 Tubbs RS, Hallock JD, Radcliff V. et al. Ligaments of the craniocervical junction. J Neurosurg Spine 2011; 14 (06) 697-709
  • 20 Fielding JW, Cochran Gv, Lawsing III JF, Hohl M. Tears of the transverse ligament of the atlas. A clinical and biomechanical study. J Bone Joint Surg Am 1974; 56 (08) 1683-1691
  • 21 Pfirrmann CW, Binkert CA, Zanetti M, Boos N, Hodler J. MR morphology of alar ligaments and occipitoatlantoaxial joints: study in 50 asymptomatic subjects. Radiology 2001; 218 (01) 133-137
  • 22 Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures. Spine 1988; 13 (07) 731-736
  • 23 Tubbs RS, Kelly DR, Humphrey ER. et al. The tectorial membrane: anatomical, biomechanical, and histological analysis. Clin Anat 2007; 20 (04) 382-386
  • 24 Lang J. Clinical Anatomy of the Head: Neurocranium, Orbit, Craniocervical Regions. Berlin, Germany: Springer; 1983
  • 25 Meoded A, Singhi S, Poretti A, Eran A, Tekes A, Huisman TA. Tectorial membrane injury: frequently overlooked in pediatric traumatic head injury. AJNR Am J Neuroradiol 2011; 32 (10) 1806-1811
  • 26 Fiester P, Soule E, Natter P, Rao D. Tectorial membrane injury in adult and pediatric trauma patients: a retrospective review and proposed classification scheme. Emerg Radiol 2019; 26 (06) 615-622
  • 27 Fiester P, Rao D, Soule E, Orallo P, Rahmathulla G. Anatomic, functional, and radiographic review of the ligaments of the craniocervical junction. J Craniovertebr Junction Spine 2021; 12 (01) 4-9
  • 28 Panjabi MM, Oxland TR, Parks EH. Quantitative anatomy of cervical spine ligaments. Part I. Upper cervical spine. J Spinal Disord 1991; 4 (03) 270-276
  • 29 Tubbs RS, Grabb P, Spooner A, Wilson W, Oakes WJ. The apical ligament: anatomy and functional significance. J Neurosurg 2000; 92 (2, Suppl): 197-200
  • 30 Tubbs RS, Dixon J, Loukas M, Shoja MM, Cohen-Gadol AA. Ligament of Barkow of the craniocervical junction: its anatomy and potential clinical and functional significance. J Neurosurg Spine 2010; 12 (06) 619-622
  • 31 Pettersson K, Hildingsson C, Toolanen G, Fagerlund M, Björnebrink J. Disc pathology after whiplash injury. A prospective magnetic resonance imaging and clinical investigation. Spine 1997; 22 (03) 283-287 , discussion 288
  • 32 Barnsley L, Lord S, Bogduk N. Whiplash injury. Pain 1994; 58 (03) 283-307
  • 33 Ulbrich EJ, Añon J, Hodler J. et al. Does normalized signal intensity of cervical discs on T2 weighted MRI images change in whiplash patients?. Injury 2014; 45 (04) 784-791
  • 34 Matsumoto M, Ichihara D, Okada E. et al. Modic changes of the cervical spine in patients with whiplash injury: a prospective 11-year follow-up study. Injury 2013; 44 (06) 819-824
  • 35 Karlsson A, Leinhard OD, Åslund U. et al. An investigation of fat infiltration of the multifidus muscle in patients with severe neck symptoms associated with chronic whiplash-associated disorder. J Orthop Sports Phys Ther 2016; 46 (10) 886-893
  • 36 Elliott JM, Smith AC, Hoggarth MA. et al. Muscle fat infiltration following whiplash: a computed tomography and magnetic resonance imaging comparison. PLoS One 2020; 15 (06) e0234061
  • 37 Elliott JM, Courtney DM, Rademaker A, Pinto D, Sterling MM, Parrish TB. The rapid and progressive degeneration of the cervical multifidus in whiplash: an MRI study of fatty infiltration. Spine 2015; 40 (12) E694-E700
  • 38 Elliott J, Pedler A, Kenardy J, Galloway G, Jull G, Sterling M. The temporal development of fatty infiltrates in the neck muscles following whiplash injury: an association with pain and posttraumatic stress. PLoS One 2011; 6 (06) e21194
  • 39 Takhtani D, Scortegagna E, Cataltepe O, Dundamadappa S. MRI findings of injury to the longus colli muscle in patients with neck trauma. AJR Am J Roentgenol 2016; 207 (02) 401-405
  • 40 Ronnen HR, de Korte PJ, Brink PR, van der Bijl HJ, Tonino AJ, Franke CL. Acute whiplash injury: is there a role for MR imaging? A prospective study of 100 patients. Radiology 1996; 201 (01) 93-96
  • 41 Hacking C, Deng F. Anderson and Montesano classification of occipital condyle fractures. Available at: Radiopaedia.org. Accessed on August 7, 2023. https://doi.org/10.53347/rID-87202
  • 42 Mueller FJ, Fuechtmeier B, Kinner B. et al. Occipital condyle fractures. Prospective follow-up of 31 cases within 5 years at a level 1 trauma centre. Eur Spine J 2012; 21 (02) 289-294
  • 43 Gehweiler JA, Duff DE, Martinez S. et al. Fractures of the atlas vertebra. Skeletal Radiol 1976; (01) 97-102 https://doi.org/10.1007/BF00347414
  • 44 Hacking C, Zinaye A, Bell D. Gehweiler classification of atlas fractures. Available at: Radiopaedia.org. Accessed on August 7, 2023. https://doi.org/10.53347/rID-86947
  • 45 Fiester P, Soule E, Rao D. et al. Appropriateness of cervical magnetic resonance imaging in the evaluation and management of C1 Jefferson fractures. World Neurosurg 2022; 167: e137-e145
  • 46 Anderson LD, D'Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am 1974; 56 (08) 1663-1674
  • 47 Hacking C, Weerakkody Y, Smith D. et al. Anderson and D'Alonzo classification of odontoid process fracture. Available at: Radiopaedia.org. Accessed on August 7, 2023. https://doi.org/10.53347/rID-41604
  • 48 Grauer JN, Shafi B, Hilibrand AS. et al. Proposal of a modified, treatment-oriented classification of odontoid fractures. Spine J 2005; 5 (02) 123-129
  • 49 Krakenes J, Kaale BR. Magnetic resonance imaging assessment of craniovertebral ligaments and membranes after whiplash trauma. Spine 2006; 31 (24) 2820-2826
  • 50 Chen J, Wang W, Han G, Han X, Li X, Zhan Y. MR investigation in evaluation of chronic whiplash alar ligament injury in elderly patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015; 40 (01) 67-71
  • 51 Ulbrich EJ, Eigenheer S, Boesch C. et al. Alterations of the transverse ligament: an MRI study comparing patients with acute whiplash and matched control subjects. AJR Am J Roentgenol 2011; 197 (04) 961-967
  • 52 Uhrenholt L, Brix L, Wichmann TO, Pedersen M, Ringgaard S, Jensen TS. Advanced magnetic resonance imaging of chronic whiplash patients: a clinical practice-based feasibility study. Chiropr Man Therap 2022; 30 (01) 2
  • 53 Dullerud R, Gjertsen O, Server A. Magnetic resonance imaging of ligaments and membranes in the craniocervical junction in whiplash-associated injury and in healthy control subjects. Acta Radiol 2010; 51 (02) 207-212
  • 54 Myran R, Kvistad KA, Nygaard OP, Andresen H, Folvik M, Zwart JA. Magnetic resonance imaging assessment of the alar ligaments in whiplash injuries: a case-control study. Spine 2008; 33 (18) 2012-2016