Semin Musculoskelet Radiol 2023; 27(05): 499-511
DOI: 10.1055/s-0043-1772190
Review Article

Imaging of the Craniocervical Junction: A Pictorial Review

1   Department of Radiology, UZ Leuven, University of Leuven, Leuven, Belgium
2   Department of Radiology, AZ Sint-Maarten, Mechelen, Belgium
,
1   Department of Radiology, UZ Leuven, University of Leuven, Leuven, Belgium
2   Department of Radiology, AZ Sint-Maarten, Mechelen, Belgium
3   Department of Diagnostic Sciences, UZ Gent, Faculty of Medicine and Health Sciences, Ghent, Belgium
4   Department of Radiology, UZ Antwerpen, University of Antwerp, Edegem, Belgium
› Author Affiliations

Abstract

The craniocervical junction (CCJ) is a complex anatomical structure comprising the occiput, the atlas, and the axis. The CCJ plays an important role in maintaining stability, providing protection, and supporting neurovascular structures. The CCJ can be affected by a wide range of congenital variants and traumatic, degenerative, inflammatory, and tumoral pathologies. This pictorial review the normal anatomy of the CCJ and presents the most common anatomical variants and pathologic conditions affecting the CCJ.

Supplementary Material



Publication History

Article published online:
10 October 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Offiah CE, Day E. The craniocervical junction: embryology, anatomy, biomechanics and imaging in blunt trauma. Insights Imaging 2017; 8 (01) 29-47
  • 2 Menezes AH, Traynelis VC. Anatomy and biomechanics of normal craniovertebral junction (a) and biomechanics of stabilization (b). Childs Nerv Syst 2008; 24 (10) 1091-1100
  • 3 Tubbs RS, Hallock JD, Radcliff V. et al. Ligaments of the craniocervical junction. J Neurosurg Spine 2011; 14 (06) 697-709
  • 4 Tubbs RS, Wellons III JC, Blount JP, Oakes WJ. Posterior atlantooccipital membrane for duraplasty. Technical note. J Neurosurg 2002; 97 (02) 266-268
  • 5 Krakenes J, Kaale BR, Rorvik J, Gilhus NE. MRI assessment of normal ligamentous structures in the craniovertebral junction. Neuroradiology 2001; 43 (12) 1089-1097
  • 6 Fiester P, Rao D, Soule E, Orallo P, Rahmathulla G. Anatomic, functional, and radiographic review of the ligaments of the craniocervical junction. J Craniovertebr Junction Spine 2021; 12 (01) 4-9
  • 7 Jain N, Verma R, Garga UC, Baruah BP, Jain SK, Bhaskar SNCT. CT and MR imaging of odontoid abnormalities: a pictorial review. Indian J Radiol Imaging 2016; 26 (01) 108-119
  • 8 Smoker WR, Khanna G. Imaging the craniocervical junction. Childs Nerv Syst 2008; 24 (10) 1123-1145
  • 9 Ahn J, Duran M, Syldort S. et al. Arcuate foramen: anatomy, embryology, nomenclature, pathology, and surgical considerations. World Neurosurg 2018; 118: 197-202
  • 10 McClugage SG, Oakes WJ. The Chiari I malformation. J Neurosurg Pediatr 2019; 24 (03) 217-226
  • 11 Tubbs RS, Beckman J, Naftel RP. et al. Institutional experience with 500 cases of surgically treated pediatric Chiari malformation type I. J Neurosurg Pediatr 2011; 7 (03) 248-256
  • 12 Pindrik J, McAllister AS, Jones JY. Imaging in Chiari I malformation. Neurosurg Clin N Am 2023; 34 (01) 67-79
  • 13 Barkovich AJ, Wippold FJ, Sherman JL, Citrin CM. Significance of cerebellar tonsillar position on MR. AJNR Am J Neuroradiol 1986; 7 (05) 795-799
  • 14 Wallace MJ, Kruse RW, Shah SA. The spine in patients with osteogenesis imperfecta. J Am Acad Orthop Surg 2017; 25 (02) 100-109
  • 15 Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014; 164A (06) 1470-1481
  • 16 Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183 (04) R95-R106
  • 17 Menezes AH. Specific entities affecting the craniocervical region: osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management of basilar impression. Childs Nerv Syst 2008; 24 (10) 1169-1172
  • 18 Janus GJ, Engelbert RH, Beek E, Gooskens RH, Pruijs JE. Osteogenesis imperfecta in childhood: MR imaging of basilar impression. Eur J Radiol 2003; 47 (01) 19-24
  • 19 Hughes DG, Chadderton RD, Cowie RA, Wraith JE, Jenkins JP. MRI of the brain and craniocervical junction in Morquio's disease. Neuroradiology 1997; 39 (05) 381-385
  • 20 Padash S, Obaid H, Henderson RDE. et al. A pictorial review of the radiographic skeletal findings in Morquio syndrome (mucopolysaccharidosis type IV). Pediatr Radiol 2023; 53 (05) 971-983
  • 21 Izzo R, Popolizio T, Balzano RF. et al. Imaging of cranio-cervical junction traumas. Eur J Radiol 2020; 127: 108960
  • 22 Santos-Nunez G, Lo HS, Kotecha H, Jose J, Abayazeed A. Imaging of spine fractures with emphasis on the craniocervical junction. Semin Ultrasound CT MR 2018; 39 (04) 324-335
  • 23 Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures. Spine 1988; 13 (07) 731-736
  • 24 Fielding JW, Hawkins RJ. Atlanto-axial rotatory fixation. (Fixed rotatory subluxation of the atlanto-axial joint). J Bone Joint Surg Am 1977; 59 (01) 37-44
  • 25 Lustrin ES, Karakas SP, Ortiz AO. et al. Pediatric cervical spine: normal anatomy, variants, and trauma. Radiographics 2003; 23 (03) 539-560
  • 26 Anderson LD, D'Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am 1974; 56 (08) 1663-1674
  • 27 Chu EC, Wong AY, Lee LY. Craniocervical instability associated with rheumatoid arthritis: a case report and brief review. AME Case Rep 2021; 5: 12
  • 28 Ellatif M, Sharif B, Baxter D, Saifuddin A. Update on imaging of the cervical spine in rheumatoid arthritis. Skeletal Radiol 2022; 51 (08) 1535-1551
  • 29 Shlobin NA, Dahdaleh NS. Cervical spine manifestations of rheumatoid arthritis: a review. Neurosurg Rev 2021; 44 (04) 1957-1965
  • 30 Joaquim AF, Ghizoni E, Tedeschi H, Appenzeller S, Riew KD. Radiological evaluation of cervical spine involvement in rheumatoid arthritis. Neurosurg Focus 2015; 38 (04) E4
  • 31 Drosos AA, Pelechas E, Voulgari PV. Radiological findings of the cervical spine in rheumatoid arthritis: what a rheumatologist should know. Curr Rheumatol Rep 2020; 22 (06) 19
  • 32 Stiskal MA, Neuhold A, Szolar DH. et al. Rheumatoid arthritis of the craniocervical region by MR imaging: detection and characterization. AJR Am J Roentgenol 1995; 165 (03) 585-592
  • 33 Kumar Y, Gupta N, Chhabra A, Fukuda T, Soni N, Hayashi D. Magnetic resonance imaging of bacterial and tuberculous spondylodiscitis with associated complications and non-infectious spinal pathology mimicking infections: a pictorial review. BMC Musculoskelet Disord 2017; 18 (01) 244
  • 34 Rivas-Garcia A, Sarria-Estrada S, Torrents-Odin C, Casas-Gomila L, Franquet E. Imaging findings of Pott's disease. Eur Spine J 2013; 22 (Suppl. 04) 567-578
  • 35 Teka M, Ghozlen HB, Zaier AY, Hnia MB, Naouar N, Abid F. Cervical spine tuberculosis. Pan Afr Med J 2020; 37: 7
  • 36 Garg RK, Somvanshi DS. Spinal tuberculosis: a review. J Spinal Cord Med 2011; 34 (05) 440-454
  • 37 Tali ET. Spinal infections. Eur J Radiol 2004; 50 (02) 120-133
  • 38 Currie S, Galea-Soler S, Barron D, Chandramohan M, Groves C. MRI characteristics of tuberculous spondylitis. Clin Radiol 2011; 66 (08) 778-787
  • 39 Scutellari PN, Galeotti R, Leprotti S, Ridolfi M, Franciosi R, Antinolfi G. The crowned dens syndrome. Evaluation with CT imaging. Radiol Med (Torino) 2007; 112 (02) 195-207
  • 40 Feydy A, Lioté F, Carlier R, Chevrot A, Drapé JL. Cervical spine and crystal-associated diseases: imaging findings. Eur Radiol 2006; 16 (02) 459-468
  • 41 Lee GS, Kim RS, Park HK, Chang JC. Crowned dens syndrome: a case report and review of the literature. Korean J Spine 2014; 11 (01) 15-17
  • 42 Nahi H, Genell A, Wålinder G. et al. Incidence, characteristics, and outcome of solitary plasmacytoma and plasma cell leukemia. Population-based data from the Swedish Myeloma Register. Eur J Haematol 2017; 99 (03) 216-222
  • 43 Ozsahin M, Tsang RW, Poortmans P. et al. Outcomes and patterns of failure in solitary plasmacytoma: a multicenter Rare Cancer Network study of 258 patients. Int J Radiat Oncol Biol Phys 2006; 64 (01) 210-217
  • 44 Pinter NK, Pfiffner TJ, Mechtler LL. Neuroimaging of spine tumors. Handb Clin Neurol 2016; 136: 689-706
  • 45 Saad A, Azzopardi C, Haleem S, Czyz M, James SL, Botchu R. Tumours of the odontoid peg revisited. Indian J Radiol Imaging 2020; 30 (04) 420-426
  • 46 Major NM, Helms CA, Richardson WJ. The “mini brain”: plasmacytoma in a vertebral body on MR imaging. AJR Am J Roentgenol 2000; 175 (01) 261-263
  • 47 O'Sullivan MD, Lyons F, Morris S, Synnott K, Munigangaiah S, Devitt A. Metastasis affecting craniocervical junction: current concepts and an update on surgical management. Global Spine J 2018; 8 (08) 866-871
  • 48 Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull's-eyes and halos: useful MR discriminators of osseous metastases. Radiology 1993; 188 (01) 249-252
  • 49 Setzer M, Vatter H, Marquardt G, Seifert V, Vrionis FD. Management of spinal meningiomas: surgical results and a review of the literature. Neurosurg Focus 2007; 23 (04) E14
  • 50 Dührsen L, Emami P, Matschke J, Abboud T, Westphal M, Regelsberger J. Meninigiomas of the craniocervical junction—a distinctive subgroup of meningiomas. PLoS One 2016; 11 (04) e0153405
  • 51 Sotoudeh H, Yazdi HR. A review on dural tail sign. World J Radiol 2010; 2 (05) 188-192
  • 52 Parmar HA, Ibrahim M, Castillo M, Mukherji SK. Pictorial essay: diverse imaging features of spinal schwannomas. J Comput Assist Tomogr 2007; 31 (03) 329-334
  • 53 Bhargava R, Parham DM, Lasater OE, Chari RS, Chen G, Fletcher BD. MR imaging differentiation of benign and malignant peripheral nerve sheath tumors: use of the target sign. Pediatr Radiol 1997; 27 (02) 124-129
  • 54 Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol 2014; 18 (03) 280-299
  • 55 Murphey MD, Minn MJ, Contreras AL. et al. Imaging of spinal chordoma and benign notochordal cell tumor (BNCT) with radiologic pathologic correlation. Skeletal Radiol 2023; 52 (03) 349-363
  • 56 Yamazawa E, Takahashi S, Shin M. et al. MRI-based radiomics differentiates skull base chordoma and chondrosarcoma: a preliminary study. Cancers (Basel) 2022; 14 (13) x
  • 57 Cui JF, Hao DP, Chen HS, Liu JH, Hou F, Xu WJ. Computed tomography and magnetic resonance imaging features of cervical chordoma. Oncol Lett 2018; 16 (01) 861-865
  • 58 Smolders D, Wang X, Drevelengas A, Vanhoenacker F, De Schepper AM. Value of MRI in the diagnosis of non-clival, non-sacral chordoma. Skeletal Radiol 2003; 32 (06) 343-350
  • 59 Lakhani DA, Martin D. Ecchordosis physaliphora: case report and brief review of the literature. Radiol Case Rep 2021; 16 (12) 3937-3939
  • 60 Sarkar N, Chakravarthy S, Chakravarty R, Mukhopadhyay S. Radiological diagnosis of a rare prepontine lesion: ecchordosis physaliphora. Cureus 2022; 14 (04) e24335
  • 61 Chihara C, Korogi Y, Kakeda S. et al. Ecchordosis physaliphora and its variants: proposed new classification based on high-resolution fast MR imaging employing steady-state acquisition. Eur Radiol 2013; 23 (10) 2854-2860
  • 62 Awad M, Gogos AJ, Kaye AH. Skull base chondrosarcoma. J Clin Neurosci 2016; 24: 1-5
  • 63 Hasegawa H, Shin M, Niwa R. et al. Revisitation of imaging features of skull base chondrosarcoma in comparison to chordoma. J Neurooncol 2022; 159 (03) 581-590
  • 64 Flemming DJ, Murphey MD, Carmichael BB, Bernard SA. Primary tumors of the spine. Semin Musculoskelet Radiol 2000; 4 (03) 299-320
  • 65 Liu JK, Burger PC, Harnsberger HR, Couldwell WT. Primary intraosseous skull base cavernous hemangioma: case report. Skull Base 2003; 13 (04) 219-228
  • 66 Hoyle JM, Layfield LJ, Crim J. The lipid-poor hemangioma: an investigation into the behavior of the “atypical” hemangioma. Skeletal Radiol 2020; 49 (01) 93-100
  • 67 Alexiou GA, Lampros M, Gavra MM, Vlachos N, Ydreos J, Boviatsis EJ. Primary intraosseous cavernous hemangioma of the cranium: a systematic review of the literature. World Neurosurg 2022; 164: 323-329