Subscribe to RSS
DOI: 10.1055/s-0043-1774905
Iodine(III)-Mediated Ring-Contraction Reactions Using Halogenated and Non-halogenated Solvents
The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Institute of Chemistry, University of São Paulo, Brazil. This research work was supported by Researchers Supporting Project Number (RSP2024R45) at King Saud University, Riyadh, Saudi Arabia.
Luiz F. Silva Jr. In memoriam.
Abstract
The transformation of a six-membered ring into the corresponding five-membered product is an important synthetic approach used in medicinal chemistry and industrial technologies. However, the yield of the product obtained through a simple one-step reaction is lower in some reported solvent systems. Here, we present the ring contraction of 1,2-dihydronaphthalene derivatives into the corresponding indanes using an environmentally friendly reagent hydroxy(tosyloxy)iodobenzene (HTIB). This transformation is achieved in both non-halogenated and halogenated solvents. We show that the halogenated solvent system not only increased the yield of the anticipated product but also reduced the formation of by-products. This study delivers an important development regarding the effectiveness of hypervalent iodine reagents in halogenated and non-halogenated solvents for ring-contraction reactions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2204-8461.
- Supporting Information
Publication History
Received: 24 March 2024
Accepted after revision: 14 May 2024
Article published online:
28 May 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Silva LF. Jr. Synlett 2014; 25: 466
- 2 Khan A, Silva LF, Rabnawaz M. New J. Chem. 2021; 45: 2078
- 3 Hong AY, Krout MR, Jensen T, Bennett NB, Harned AM, Stoltz BM. Angew. Chem. Int. Ed. 2011; 50: 2756 ; Angew. Chem. 2011, 123, 2808
- 4 Silva LF. Jr. Stereosel. Synth. Drugs Nat. Prod. 2013; 1
- 5 Redmore D, Gutsche CD. Adv. Alicyclic Chem. 1971; 3: 1
- 6 Meier H, Zeller K. Angew. Chem., Int. Ed. Engl. 1975; 14: 32
- 7 Xu Z, Chen H, Wang Z, Ying A, Zhang L. J. Am. Chem. Soc. 2016; 138: 5515
- 8 Bryceson YT, Chiang SC. C, Darmanin S, Fauriat C, Schlums H, Theorell J, Wood SM. J. Innate Immun. 2011; 3: 216
- 9 Silva L. Molecules 2006; 11: 421
- 10 Silva LF. Jr, Carneiro VM. T. Synthesis 2010; 1059
- 11 Ferraz HM. C, Silva LF. Jr, Vieira Tde O. Synthesis 1999; 2001
- 12 Hudlicky T, Price JD. Chem. Rev. 1989; 89: 1467
- 13 Song Z.-L, Fan C.-A, Tu Y.-Q. Chem. Rev. 2011; 111: 7523
- 14 Ferraz HM. C, Carneiro VM. T, Silva LF. Jr. Synthesis 2009; 385
- 15 Ferraz HM. C, Silva LF. Jr, Vieira TO. Tetrahedron 2001; 57: 1709
- 16 Cvjetko P, Cvjetko I, Pavlica M. Arhiv za higijenu rada i toksikologiju 2010; 61: 111
- 17 Afshari R, Mégarbane B, Zavar A. Clin. Toxicol. 2012; 50: 791
- 18 Heinen F, Engelage E, Dreger A, Weiss R, Huber SM. Angew. Chem. Int. Ed. 2018; 57: 3830
- 19 Heinen F, Engelage E, Cramer CJ, Huber SM. J. Am. Chem. Soc. 2020; 142: 8633
- 20 Yang H, Wong MW. Molecules 2020; 25: 1045
- 21 Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 22 Khan A, Silva LF. Jr, Rabnawaz M. Asian J. Org. Chem. 2021; 10: 2549
- 23 Lussari N, Khan A, Pilli RA, Dos Santos AA, Silva LF. Jr, Braga AA. C. New J. Chem. 2022; 46: 20817
- 24 Ferraz HM. C, Aguilar AM, Silva LF. Jr. Tetrahedron 2003; 59: 5817
- 25 Silva LF. Jr, Siqueira FA, Pedrozo EC, Vieira FY. M, Doriguetto AC. Org. Lett. 2007; 9: 1433
- 26 Ferraz HM. C, Aguilar AM, Silva LF. Jr. Synthesis 2003; 1031
- 27 Miyamoto K, Sei Y, Yamaguchi K, Ochiai M. J. Am. Chem. Soc. 2009; 131: 1382
- 28 Ochiai M, Yoshimura A, Miyamoto K. Tetrahedron Lett. 2009; 50: 4792
- 29 Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
- 30 Khan A, Sarwar MG, Ali S. Molecules 2024; 29: 501