Synthesis 2024; 56(13): 2084-2092
DOI: 10.1055/s-0043-1774905
paper

Iodine(III)-Mediated Ring-Contraction Reactions Using Halogenated and Non-halogenated Solvents

Ajmir Khan
a   School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI 48824-1223, URL: khanajmi@msu.edu
b   Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP CEP 05508-000, Brazil
,
Umar Nishan
c   Department of Chemistry, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
,
Amir Badshah
c   Department of Chemistry, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
,
Riaz Ullah
d   Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
,
Essam A. Ali
e   Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
› Author Affiliations
The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Institute of Chemistry, University of São Paulo, Brazil. This research work was supported by Researchers Supporting Project Number (RSP2024R45) at King Saud University, Riyadh, Saudi Arabia.


Luiz F. Silva Jr. In memoriam.

Abstract

The transformation of a six-membered ring into the corresponding five-membered product is an important synthetic approach used in medicinal chemistry and industrial technologies. However, the yield of the product obtained through a simple one-step reaction is lower in some reported solvent systems. Here, we present the ring contraction of 1,2-dihydronaphthalene derivatives into the corresponding indanes­ using an environmentally friendly reagent hydroxy(tosyloxy)iodobenzene (HTIB). This transformation is achieved in both non-halogenated and halogenated solvents. We show that the halogenated solvent system not only increased the yield of the anticipated product but also reduced the formation of by-products. This study delivers an important development regarding the effectiveness of hypervalent iodine reagents in halogenated and non-halogenated solvents for ring-contraction reactions.

Supporting Information



Publication History

Received: 24 March 2024

Accepted after revision: 14 May 2024

Article published online:
28 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany