Synthesis
DOI: 10.1055/s-0043-1775375
review

Recent Advances in the Synthesis and Applications of Ionic Liquids Derived from Natural Products

Fereshteh Khorasani
a   Chemistry Department, Vali-e-Asr University of Rafsanjan, Kerman, Iran
,
Reza Ranjbar-Karimi
a   Chemistry Department, Vali-e-Asr University of Rafsanjan, Kerman, Iran
,
Alberto Marra
b   Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, 1919 Route de Mende, 34293 Montpellier cedex 5, France
› Author Affiliations
A. Marra is grateful to Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, and the Centre National de la Recherche Scientifique (CNRS) for financial support. F. Khorasani and R. Ranjbar-Karimi extend their appreciation to the Vali-e-Asr University of Rafsanjan for its support.


Abstract

Ionic liquids, nonvolatile salts featuring a melting point below 100 °C, are one of the few alternative solvents for environmentally friendly processes. However, like most molecular solvents, they are usually prepared by means of building blocks derived from fossil oil. Fortunately, an increasing number of ionic liquids are synthesized starting from renewable natural products such as sugars and amino acids. In the present review, we describe the detailed synthesis and applications of the biosourced ionic liquids reported in the literature over the last four years.

1 Introduction

2 Carbohydrate-Based Ionic Liquids

3 Amino Acid Based Ionic Liquids

4 Terpene-Based Ionic Liquids

5 Miscellaneous Ionic Liquids

6 Conclusion



Publication History

Received: 13 May 2024

Accepted after revision: 05 June 2024

Article published online:
03 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Welton T. Chem. Rev. 1999; 99: 2071
    • 1b Wilkes JS. Green Chem. 2002; 4: 73
    • 1c Chiappe C, Pieraccini D. J. Phys. Org. Chem. 2005; 18: 275
    • 1d Plechkova NV, Seddon KR. Chem. Soc. Rev. 2008; 37: 123
    • 1e Weingärtner H. Angew. Chem. Int. Ed. 2008; 47: 654
    • 1f Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
    • 1g Petkovic M, Seddon KR, Rebelo LP. N, Silva Pereira C. Chem. Soc. Rev. 2011; 40: 1383
    • 1h Itoh T. Chem. Rev. 2017; 117: 10567
    • 1i Flieger J, Flieger M. Int. J. Mol. Sci. 2020; 21: 6267
    • 1j Beil S, Markiewicz M, Silva Pereira C, Stepnowski P, Thöming J, Stolte S. Chem. Rev. 2021; 121: 13132
    • 1k Wei P, Pan X, Chen C.-Y, Li H.-Y, Yan X, Li C, Chu Y.-H, Yan B. Chem. Soc. Rev. 2021; 50: 13609
    • 1l Marullo S, D’Anna F, Rizzo C, Billeci F. Org. Biomol. Chem. 2021; 19: 2076

      For reviews, see:
    • 2a Imperato G, König B, Chiappe C. Eur. J. Org. Chem. 2007; 1049
    • 2b Flieger J, Feder-Kubis J, Tatarczak-Michalewska M. Int. J. Mol. Sci. 2020; 21: 4253

      For reviews, see:
    • 3a Chiappe C, Marra A, Mele A. Top. Curr. Chem. 2010; 295: 177
    • 3b Marra A, Chiappe C, Mele A. Chimia 2011; 65: 76
    • 3c Manuela M, Pereira A. Mini-Rev. Org. Chem. 2012; 9: 243
    • 3d Gaida B, Brzęczek-Szafran A. Molecules 2020; 25: 3285
    • 3e Zullo V, Iuliano A, Guazzelli L. Molecules 2021; 26: 2052
    • 3f Ghiradello M, Zhang Y.-Y, Voglmeir J, Galan MC. Carbohydr. Res. 2022; 520: 108643
  • 4 Muthukuru P, Krishnaraj P, Rayadurgam J, Reddy SR. New J. Chem. 2021; 45: 20075
    • 5a In Schemes 1, 2, 4, 6, 8, 26, 27, and 29 the sugars xylose, galactose, glucose, and ribose were drawn as belonging to the stereochemical series l instead of the correct series d.
    • 5b In Schemes 22 and 24, the configuration of all the asymmetric carbon atoms of the sugars was not indicated.
    • 5c The sugar derivatives 41, 67, 71, and 85 should be the same compound (d-glucopyranose peracetate).
    • 5d The sugar derivatives 72 (anomeric configuration not indicated) and 78 should be the same compound.
    • 5e Compound 12 should be the opposite enantiomer.
    • 5f In Scheme 9, the configuration of the C-3 sugar atom was not indicated.
  • 6 Brzęczek-Szafran A, Gaida B, Blacha-Grzechnik A, Matuszek K, Chrobok A. Int. J. Mol. Sci. 2021; 22: 10426
  • 7 Brzęczek-Szafran A, Erfurt K, Blacha-Grzechnik A, Krzywiecki M, Boncel S, Chrobok A. ACS Sustainable Chem. Eng. 2019; 7: 19880
  • 8 Gaida B, Kondratowicz J, Piper SL, Forsyth CM, Chrobok A, Macfarlane DR, Matuszek K, Brzęczek-Szafran A. ACS Sustainable Chem. Eng. 2024; 12: 623
  • 9 Szelwicka A, Erfurt K, Jurczyk S, Boncel S, Chrobok A. Materials 2021; 14: 3090
  • 10 Barteczko N, Grymel M, Erfurt K, Jakobik-Kolon A, Brzęczek-Szafran A, Chrobok A. J. Mol. Liq. 2023; 386: 122484
  • 11 Erfurt K, Markiewicz M, Siewniak A, Lisicki D, Zalewski M, Stolte S, Chrobok A. ACS Sustainable Chem. Eng. 2020; 8: 10911
  • 12 Quagliotto P, Viscardi G, Barolo C, D’Angelo D, Barni E, Compari C, Duce E, Fisicaro E. J. Org. Chem. 2005; 70: 9857
  • 13 Dmochowska B, Piosik J, Woziwodzka A, Sikora K, Wisniewski A, Wegrzyn G. J. Hazard. Mater. 2011; 193: 272
  • 14 Dahmen J, Frejd T, Grönberg G, Lave T, Magnusson G, Noori G. Carbohydr. Res. 1983; 116: 303
  • 15 Komabayashi M, Nokami T, Jopp S. Asian J. Org. Chem. 2020; 9: 2092
  • 16 Komabayashi M, Okushiba S, Nokami T, Jopp S. Asian J. Org. Chem. 2023; 12: e202300093
  • 17 Schnegas J, Jopp S. Compounds 2021; 1: 154
  • 18 Lehmann P, Jopp S. ChemistryOpen 2022; 11: e202200135
  • 19 Reiß M, Brietzke A, Eickner T, Stein F, Villinger A, Vogel C, Kragl U, Jopp S. RSC Adv. 2020; 10: 14299
  • 20 Lehmann P, Jopp S. Chem. Asian J. 2024; 19: e202300918
  • 21 Jopp S, Fleischhammer T, Lavrentieva A, Kara S, Meyer J. RSC Sustainability 2023; 1: 1751
  • 22 Lambrecht S, Schröter H, Pohle H, Jopp S. ACS Omega 2024; 9: 5418
  • 23 Ziems H, Komabayashi M, Lehmann P, Villinger A, Jopp S. Eur. J. Org. Chem. 2024; e202400177
  • 24 Zhou Z, Li M, Liu G, Xu G, Xue J. Appl. Organomet. Chem. 2019; 33: e4942
  • 25 Xie Q, Li J, Wen X, Huang Y, Hu Y, Huang Q, Xu G, Xie Y, Zhou Z. Carbohydr. Res. 2022; 512: 108516
  • 26 Zhou Z, Xie Q, Li J, Yuan Y, Liu Y, Lu D, Xie Y. Catal. Lett. 2022; 152: 838
  • 27 Zhou Z, Xie Q, Zhou X, Yuan Y, Pan Y, Lu D, Xue J. Carbohydr. Res. 2020; 496: 108079
  • 28 Hobsteter AW, Lo Fiego MJ, Silbestri GF. RSC Adv. 2024; 14: 1626
  • 29 Hobsteter AW, Badajoz MA, Lo Fiego MJ, Silbestri GF. ACS Omega 2022; 7: 21788
  • 30 Devanathan R, Balaji GL, Lakshmipathy R. J. Env. Pub. Health 2021; 6612500
  • 31 Jayachandra R, Lakshmipathy R, Reddy SR. J. Mol. Liq. 2016; 219: 1172
  • 32 Komabayashi M, Stiller T, Jopp S. J. Mol. Liq. 2021; 325: 115167
  • 33 Jayachandra R, Reddy SR. Trends Carbohydr. Res. 2015; 7: 60
  • 34 Garg P, Reddy SR. Asian J. Org. Chem. 2022; 11: e202200322
  • 35 Garg P, Reddy SR. ChemistrySelect 2023; 8: e202301634
  • 36 Ma X, Chen B, Cai L. J. Sep. Sci. 2022; 45: 3604
  • 37 Sikora K, Nowacki A, Sikorski A, Dmochowska B. J. Mol. Struct. 2015; 1101, 228
  • 38 Sikora K, Nowacki A, Szweda P, Woziwodzka A, Bartoszewska S, Piosik J, Dmochowska B. Molecules 2022; 27: 757
  • 39 Ghiradello M, Costantini M, Vecchi A, Pacifico S, Pazzi D, Castiglione F, Mele A, Marra A. Eur. J. Org. Chem. 2022; e202200100
  • 40 Streith J, Boiron A, Frankowsky A, Le Nouen D, Rudyk H, Tschamber T. Synthesis 1995; 944
  • 41 Diehl V, Cuny E, Lichtenthaler FW. Heterocycles 1998; 48: 1193
  • 42 Oikawa N, Müller C, Kunz M, Lichtenthaler FW. Carbohydr. Res. 1998; 309: 269
  • 43 Qiao S, Dong L, Jia Y, Zhang Y, Bao L, Kang Y, Wang Y, Lin W, Liu P, Wang J. Int. J. Biol. Macromol. 2024; 261: 129789
  • 44 For instance, the coupling constant (5.0 Hz) of the doublet signal at 6.19 ppm found in the 1H NMR spectrum of the glucose derivative would suggest a furanose isomer instead of the drawn pyranose form.
  • 45 It is not clear why, in the first step of the synthesis, the chloroacetyl chloride selectively reacted with the primary alcohol of the d-glucose instead of the more reactive, hemiacetalic hydroxyl group at the anomeric position.
  • 46 Yang G, Mei G, Shen P, Hong H, Wu Z. Carbohydr. Res. 2021; 500: 108209
  • 47 Aslam R, Mobin M, Huda, Murmu M, Banerjee P, Aslam J. J. Mol. Liq. 2021; 334: 116469
  • 48 Tao G.-H, He L, Liu W.-S, Xu L, Xiong W, Wang T, Kou Y. Green Chem. 2006; 8: 639
  • 49 Carreira AR. F, Rocha SN, eSilva FA, Sintra TE, Passos H, Ventura SP. N, Coutinho JA. P. Fluid Phase Equilib. 2021; 542–543: 113091
  • 50 Allen CR, Richard PL, Ward AJ, van de Water LG. A, Masters AF, Maschmeyer T. Tetrahedron Lett. 2006; 47: 7367
  • 51 De Santis S, Masci G, Casciotta F, Caminiti R, Scarpellini E, Campetella M, Gontrani L. Phys. Chem. Chem. Phys. 2015; 17: 20687
  • 52 Recker EA, Green M, Soltani M, Paull DH, McManus GJ, Davis JH. Jr, Mirjafari A. ACS Sustainable Chem. Eng. 2022; 10: 11885
  • 53 Noorani N, Mehrdad A. J. Mol. Liq. 2022; 357: 119078
  • 54 Yuan S, Chen Y, Ji X, Yang Z, Lu X. Fluid Phase Equilib. 2017; 445: 14
  • 55 Li E, Li Y, Liu S, Yao P. Colloids Surf. A: Physicochem. Eng. Asp. 2023; 657: 130541
  • 56 Ma X, Li Y, Zhou Q, Zhu G, Xiong J, Zhao L, Yang X, Wang S. Ind. Eng. Chem. Res. 2023; 62: 15226
  • 57 Greño M, Castro-Puyana M, Marina ML. Microchem. J. 2020; 157: 105070
  • 58 Salido-Fortuna S, Fernández-Bachiller MI, Marina ML, Castro-Puyana M. J. Chromatogr. A. 2022; 1670, 462955
  • 59 Grassiri B, Mezzetta A, Maisetta G, Migone C, Fabiano A, Esin S, Guazzelli L, Zambito Y, Batoni G, Piras AM. Int. J. Mol. Sci. 2023; 24: 2714
  • 60 Yan Y, Wang Q, Xiang Z, Zheng Y, Wang S, Yang Y. New J. Chem. 2017; 41: 8985
  • 61 Häckl K, Mühlbauer A, Ontiveros JF, Marinkovic S, Estrine B, Kunz W, Nardello-Rataj V. J. Colloid Interface Sci. 2018; 511: 165
  • 62 Kaczmarek DK, Gwiazdowska D, Marchwińska K, Klejdysz T, Wojcieszak M, Materna K, Pernak J. J. Mol. Liq. 2022; 360: 119357
  • 63 Lai A, Leong N, Zheng D, Ford L, Nguyen T.-H, Williams HD, Benameur H, Scammells PJ, Porter CJ. H. Pharm. Res. 2022; 39: 2405
  • 64 Terenteva O, Bikmukhametov A, Gerasimov A, Padnya P, Stoikov I. Molecules 2022; 27: 8006
  • 65 Iki N, Narumi F, Fujimoto T, Morohashi N, Miyano S. J. Chem. Soc., Perkin Trans. 2 1998; 2745
  • 66 Andreyko EA, Padnya PL, Daminova RR, Stoikov II. RSC Adv. 2014; 4: 3556
  • 67 Padnya PL, Andreyko EA, Mostovaya OA, Rizvanov IK, Stoikov II. Org. Biomol. Chem. 2015; 13: 5894
  • 68 Kapitanov IV, Raba G, Špulák M, Vilu R, Karpichev Y, Gathergood N. J. Mol. Liq. 2023; 374: 121285
  • 69 Ghanem OB, Shahrom MS. R, Shah SN, Mutalib MI. A, Leveque J.-M, Ullah Z, El-Harbawi M, Alnarabiji MS. Fuel 2023; 337: 127141
  • 70 Zalewska K, Pinto I, Cabrita L, Zakrzewska ME, Noronha JP, da Ponte MN, Branco LC. Catalysts 2023; 13: 270
  • 71 Marcinkowski Ł, Szepiński E, Milewska MJ, Kloskowski A. J. Mol. Liq. 2019; 284: 557
  • 72 Warmińska D, Kloskowski A. J. Chem. Thermodyn. 2023; 187: 107148
  • 73 Anum D, Bwambok DK. J. Mol. Liq. 2023; 390: 12314156
  • 74 Pernak J, Feder-Kubis J. Chem. Eur. J. 2005; 11: 4441
  • 75 Pernak J, Feder-Kubis J, Cieniecka-Rosłonkiewicz A, Fischmeister C, Griffin ST, Rogers RD. New J. Chem. 2007; 31: 879
  • 76 Feder-Kubis J, Szefczyk B, Kubicki M. J. Org. Chem. 2015; 80: 237
  • 77 Feder-Kubis J, Czerwoniec P, Lewandowski P, Pospieszny H, Smiglak M. ACS Sustainable Chem. Eng. 2020; 8: 842
  • 78 Lewandowski P, Kukawka R, Pospieszny H, Smiglak M. New J. Chem. 2014; 38: 1372
  • 79 Feder-Kubis J, Wnetrzak A, Chachaj-Brekiesz A. ACS Biomater. Sci. Eng. 2020; 6: 3832
  • 80 Feder-Kubis J, Flieger J, Tatarczak-Michalewska M, Płazińska A, Madejska A, Swatko-Ossor M. RSC Adv. 2017; 7: 32344
  • 81 Akhmedov AA, Shurpik DN, Padnya PL, Khadieva AI, Gamirov RR, Panina YV, Gazizova AF, Grishaev DY, Plemenkov VV, Stoikov II. Int. J. Mol. Sci. 2021; 22: 7950
  • 82 Bénéteau R, Lebreton J, Dénès F. Chem. Asian J. 2012; 7: 1516
  • 83 Bhadani A, Rane J, Veresmortean C, Banerjee S, John G. Soft Matter 2015; 11: 3076
  • 84 Gilfanov IR, Pavelyev RS, Nikitina LE, Frolova LL, Popov AV, Rakhmatullin IZ, Klochkov VV, Lisovskaya SA, Trizna EY, Grishaev DY, Kayumov AR. Molbank 2023; 1: M1592
  • 85 Lin G.-S, Duan W.-G, Yang L.-X, Huang M, Lei F.-H. Molecules 2017; 22: 193
  • 86 Shi Y, Si H, Wang P, Chen S, Shang S, Song Z, Wang Z, Liao S. Molecules 2019; 24: 3144
  • 87 de Richter RK, Bonato M, Follet M, Kamenka J.-M. J. Org. Chem. 1990; 55: 2855
  • 88 Liu H.-X, Tan H.-B, He M.-T, Li L, Wang Y.-H, Long C.-L. Tetrahedron 2015; 71: 2369
  • 89 Yan J, Zhu Y, Hu G, Liang Q, Ge L, Yang K. Tetrahedron 2023; 130: 133165
  • 90 Rzemieniecki T, Kleiber T, Pernak J. RSC Adv. 2021; 11: 27530
  • 91 Pernak J, Rzemieniecki T, Klejdysz T, Qu F, Rogers RD. ACS Sustainable Chem. Eng. 2020; 8: 9263
  • 92 Liu S, Gonzalez M, Kong C, Weir S, Socha AM. Biotechnol Biofuels 2021; 14: 47
  • 93 Diez V, DeWeese A, Kalb RS, Blauch DN, Socha AM. Ind. Eng. Chem. Res. 2019; 58: 16009
  • 94 Liu S, Das L, Blauch DN, Veronee C, Dou C, Gladden J, Sun N, Socha AM. Green Chem. 2020; 22: 3917
  • 95 Monaci S, Minudri D, Guazzelli L, Mezzetta A, Mecerreyes D, Forsyth M, Somers A. Molecules 2023; 28: 5568
  • 96 Sintra TE, Luís A, Rocha SN, Lobo Ferreira AI. M. C, Goncalves F, Santos LM. N. B. F, Neves BM, Freire MG, Ventura SP. M, Coutinho JA. P. ACS Sustainable Chem. Eng. 2015; 3: 2558
  • 97 Sintra TE, Abranches DO, Benfica J, Soares BP, Ventura SP. M, Coutinho JA. P. Eur. J. Pharm. Biopharm. 2021; 164: 86
  • 98 García MT, Bautista E, de la Fuente A, Pérez L. Pharmaceutics 2023; 15: 1806
  • 99 Kaur N, Rahim JU, Rai R, Chopra HK. ChemistrySelect 2021; 6: 5685
  • 100 Singh A, Chopra HK. Tetrahedron: Asymmetry 2016; 27: 448
  • 101 Suk M, Kümmerer K. Green Chem. 2023; 25: 365