Subscribe to RSS
DOI: 10.1055/s-0043-1775425
Synthesis, In Vitro, and In Silico Approach to Quinoline-Arylsulfonate Derivatives as Antimicrobial Agents: DFT, Molecular Docking, and ADMET Studies
Afreen Inam acknowledges financial support UGC-BSR Research Start-up-Grant: F.No. 30-569/2021(BSR) from the University Grant Commission (UGC), Govt. of India. Sabahat Samreen acknowledges the University Grant Commission (UGC), Gov. of India for providing JRF and SRF Fellowships as financial support.

Abstract
A series of novel 4-((7-chloroquinolin-4-yl)amino)phenyl arenesulfonates were synthesized via a two-step process and characterized by different spectroscopic technique for structural confirmation. The electronic structure of these derivatives was investigated by Density Functional Theory (DFT), a quantum mechanical method. All the derivatives were evaluated for their biological potency. The antibacterial activity was examined against a panel of bacteria, but they were found to be inactive. Antifungal examination demonstrated that these derivatives exhibited good to potent efficacy against fungal strain Candida albicans. Five derivatives had better MIC values between 125–250 μg/mL among all the synthesized compounds. These derivatives inhibited the formation and development of biofilms and other virulence factors of C. albicans such as adhesion and extracellular secreted proteinases and phospholipases. Furthermore, the result showed that these derivatives have low toxicity against human RBC cells. An in silico docking study showed a good binding energy with Als3 protein (PDB ID: 4LE8) and Sap2 protein (PDB ID: 1EAG) for 4-((7-chloroquinolin-4-yl)amino)phenyl 4-isopropylbenzenesulfonate and 4-((7-chloroquinolin-4-yl)amino)phenyl 4-methoxybenzenesulfonate. Considering the inhibitory effects of these derivatives against C. albicans, they can be used as potential candidates for antifungal development.
Key words
quinoline - sulfonyl ester - DFT study - antimicrobial - Candida albicans - hemolysis assaySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775425. Included are general information, antifungal activity of compounds (Figure S1), proteinase secretion (Figure S2), spectral data, copy of 1H NMR and 13C NMR spectra (Figure S3 – Figure S13), and LCMS spectra (Figure S14 – Figure S24) of synthesized compounds (QL1 -QL11) (PDF).
- Supporting Information
Publication History
Received: 08 October 2024
Accepted after revision: 29 November 2024
Article published online:
07 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Rodrigues ML, Nosanchuk JD. Fungal Diseases as Neglected Pathogens: A Wake-Up Call to Public Health Officials. In Advances in Clinical Immunology, Medical Microbiology, COVID-19, and Big Data. Bawa R. Jenny Stanford Publishing; New York: 2021: 399-411
- 2 Ferreira JA, Varjani S, Taherzadeh MJ. Curr. Pollut. Rep. 2020; 6: 295
- 3 Denning DW. Lancet Infect. Dis. 2024; 24: e428
- 4 Casalini G, Giacomelli A, Antinori S. Lancet Microbe 2024; 5: 717
- 5 Abirami G, Alexpandi R, Durgadevi R, Kannappan A, Veera Ravi A. Front. Microbiol. 2020; 11: 561298
- 6 Bu QR, Bao MY, Yang Y, Wang TM, Wang CZ. Foods 2022; 11: 2951
- 7 Li Y, Chen C, Cong L, Mao S, Shan M, Han Z, Mao J, Xie Z, Zhu Z. Virulence 2023; 14: 2230009
- 8 Li Y, Shan M, Yan M, Yao H, Wang Y, Gu B, Zhu Z, Li H. Front. Microbiol. 2019; 10: 2844
- 9 Liu N, Zhang N, Zhang S, Zhang L, Liu Q. Bioengineered 2021; 12: 2420
- 10 Bonhomme J, d’Enfert C. Curr. Opin. Microbiol. 2013; 16: 398
- 11 Mayer FL, Wilson D, Hube B. Mayer. In Benezit Dictionary of Artists [Online]. Oxford University Press; Posted 31.10.2011
- 12 Rossoni RD, Barbosa JO, Vilela SF. G, Dos Santos JD, Jorge AO. C, Junqueira JC. Braz. J. Oral Sci. 2013; 12: 199
- 13 Pristov KE, Ghannoum MA. Clin. Microbiol. Infect. 2019; 25: 792
- 14 Yousef F, Mansour O, Herbali J. In-vitro In-vivo In-silico J. 2018; 1: 1
- 15 Kumar Verma S, Verma R, Xue F, Kumar Thakur P, Girish YR, Rakesh KP. Bioorg. Chem. 2020; 105: 104400
- 16 Xu W, He J, He M, Han F, Chen X, Pan Z, Wang J, Tong M. Molecules 2011; 16: 9129
- 17 Alsaedi AM. R, Farghaly TA, Shaaban MR. Molecules 2019; 24: 4009
- 18 Diaconu D, Mangalagiu V, Amariucai-Mantu D, Antoci V, Giuroiu CL, Mangalagiu II. Molecules 2020; 25: 2946
- 19 Zhang B. Arch. Pharm. 2019; 352: 1800382
- 20 Behera S, Mohanty P, Behura R, Nath B, Barick AK, Jali BR. Biointerface Res. Appl. Chem. 2022; 12: 6078
- 21 Van de Walle T, Cools L, Mangelinckx S, D’hooghe M. Eur. J. Med. Chem. 2021; 226: 113865
- 22 Ilakiyalakshmi M, Arumugam Napoleon A. Arab. J. Chem. 2022; 15: 104168
- 23 Hernández-Ayala LF, Guzmán-López EG, Galano A. Antioxidants 2023; 1853
- 24 Mukherjee S, Pal M. Drug Discovery Today 2013; 18: 389
- 25 Ajani OO, Iyaye KT, Ademosun OT. RSC Adv. 2022; 12: 18594
- 26 El Shehry MF, Ghorab MM, Abbas SY, Fayed EA, Shedid SA, Ammar YA. Eur. J. Med. Chem. 2018; 143: 1463
- 27 Yang G.-Z, Zhu J.-K, Yin X.-D, Yan Y.-F, Wang Y.-L, Shang X.-F, Liu Y.-Q, Zhao Z.-M, Peng J.-W, Liu H. J. Agric. Food Chem. 2019; 67: 11340
- 28 da Rosa Monte Machado G, Diedrich D, Ruaro TC, Zimmer AR, Lettieri Teixeira M, de Oliveira LF, Jean M, Van de Weghe P, de Andrade SF, Baggio Gnoatto SC, Fuentefria AM. Braz. J. Microbiol. 2020; 51: 1691
- 29 Antoci V, Oniciuc L, Amariucai-Mantu D, Moldoveanu C, Mangalagiu V, Amarandei AM, Lungu CN, Dunca S, Mangalagiu II, Zbancioc G. Pharmaceuticals 2021; 14: 335
- 30 Evren AE, Karaduman AB, Sağlik BN, Özkay Y, Yurttaş L. ACS Omega 2023; 8: 1410
- 31 Pooja K, Fatima A, Sharma A, Garima K, Savita S, Kumar M, Verma I, Siddiqui N, Javed S. J. Mol. Struct. 2022; 1256: 132549
- 32 Ahmad S, Reeda VS. J, Aziz K, Arora H, Kumar M, Garima K, Ali A, Shahid M, Muthu S, Siddiqui N, Javed S. J. Mol. Struct. 2024; 1312: 138554
- 33 Muthu S, Elamurugu Porchelvi E. Spectrochim. Acta, Part A 2013; 115: 275
- 34 Siddiqui N, Javed S. J. Mol. Struct. 2020; 1224: 129021
- 35 Mumit MA, Pal TK, Alam MA, Islam MA.-A.-A.-A. Paul S, Sheikh MC. J. Mol. Struct. 2020; 1220: 128715
- 36 Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK. Bioorg. Med. Chem. 2004; 12: 5533
- 37 Garima K, Fatima A, Pooja K, Savita S, Sharma M, Kumar M, Muthu S, Siddiqui N, Javed S. Polycyclic Aromat. Compd. 2023; 43: 7828
- 38 www.swissadme.ch/ (accessed Dec 17, 2024)
- 39 Frisch MJ, Trucks GW, HeadGordon M, Gill PM. W, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJ. P, Pople JA. Gaussian 92, Revision E.3. Gaussian Inc; Pittsburgh: 1992
- 40 Sheehan DJ, Brown SD. Pfaller M. A, Warnock DW, Rex HR, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Steele Moore L, Odds FC, Rinaldi MG, Walsh TW. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. Approved Guideline. National Committee for Clinical Laboratory Standards; Pennsylvania: 2004: M44-A
- 41 Sharma Y, Khan LA, Manzoor N. J. Mycol. Med. 2016; 26: 244
- 42 Sharma Y, Rastogi SK, Perwez A, Rizvi MA, Manzoor N. Med. Mycol. 2020; 58: 93
- 43 Ahmedi S, Pant P, Raj N, Manzoor N. Phytomedicine Plus 2022; 2: 100285
- 44 Laskowski RA, MacArthur MW, Moss DS, Thornton JM. J. Appl. Crystallogr. 1993; 26: 283
- 45 Tian W, Chen C, Lei X, Zhao J, Liang J. Nucleic Acids Res. 2018; 46: W363