Semin Neurol 2023; 43(05): 799-806
DOI: 10.1055/s-0043-1775791
Review Article

Disease-Based Prognostication: Myasthenia Gravis

1   Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
,
Anahit Mehrabyan
1   Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
› Author Affiliations

Abstract

Myasthenia gravis (MG) is an acquired autoimmune neuromuscular junction transmission disorder that clinically presents as fluctuating or persistent weakness in various skeletal muscle groups. Neuroprognostication in MG begins with some basic observations on the natural history of the disease and known treatment outcomes. Our objective is to provide a framework that can assist a clinician who encounters the MG patient for the first time and attempts to prognosticate probable outcomes in individual patients. In this review article, we explore clinical type, age of onset, antibody status, severity of disease, thymus pathology, autoimmune, and other comorbidities as prognostic factors in MG.



Publication History

Article published online:
26 September 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2002; 2 (10) 797-804
  • 2 Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 2015; 14 (10) 1023-1036
  • 3 Jaretzki III A, Barohn RJ, Ernstoff RM. et al; Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Myasthenia gravis: recommendations for clinical research standards. Neurology 2000; 55 (01) 16-23
  • 4 Benatar M, Sanders DB, Burns TM. et al; Task Force on MG Study Design of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Recommendations for myasthenia gravis clinical trials. Muscle Nerve 2012; 45 (06) 909-917
  • 5 Baggi F, Andreetta F, Maggi L. et al. Complete stable remission and autoantibody specificity in myasthenia gravis. Neurology 2013; 80 (02) 188-195
  • 6 Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve 2008; 37 (02) 141-149
  • 7 Schneider-Gold C, Hagenacker T, Melzer N, Ruck T. Understanding the burden of refractory myasthenia gravis. Ther Adv Neurol Disord 2019; 12: 1756286419832242
  • 8 Bever Jr CT, Aquino AV, Penn AS, Lovelace RE, Rowland LP. Prognosis of ocular myasthenia. Ann Neurol 1983; 14 (05) 516-519
  • 9 Oosterhuis HJ. The natural course of myasthenia gravis: a long term follow up study. J Neurol Neurosurg Psychiatry 1989; 52 (10) 1121-1127
  • 10 Kupersmith MJ, Latkany R, Homel P. Development of generalized disease at 2 years in patients with ocular myasthenia gravis. Arch Neurol 2003; 60 (02) 243-248
  • 11 Sommer N, Sigg B, Melms A. et al. Ocular myasthenia gravis: response to long-term immunosuppressive treatment. J Neurol Neurosurg Psychiatry 1997; 62 (02) 156-162
  • 12 Punga AR, Maddison P, Heckmann JM, Guptill JT, Evoli A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21 (02) 176-188
  • 13 Schroeter M, Thayssen G, Kaiser J. Myasthenia gravis—exacerbation and crisis. Neurol Int Open 2018; 02: E10-E15
  • 14 Mazzoli M, Ariatti A, Valzania F. et al. Factors affecting outcome in ocular myasthenia gravis. Int J Neurosci 2018; 128 (01) 15-24
  • 15 Wang L, Zhang Y, He M. Clinical predictors for the prognosis of myasthenia gravis. BMC Neurol 2017; 17 (01) 77
  • 16 Vijayan J, Menon D, Barnett C, Katzberg H, Lovblom LE, Bril V. Clinical profile and impact of comorbidities in patients with very-late-onset myasthenia gravis. Muscle Nerve 2021; 64 (04) 462-466
  • 17 Evoli A, Batocchi AP, Minisci C, Di Schino C, Tonali P. Clinical characteristics and prognosis of myasthenia gravis in older people. J Am Geriatr Soc 2000; 48 (11) 1442-1448
  • 18 Fang F, Sveinsson O, Thormar G. et al. The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J Intern Med 2015; 277 (05) 594-604
  • 19 Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol 2020; 11: 212
  • 20 Verschuuren JJ, Huijbers MG, Plomp JJ. et al. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev 2013; 12 (09) 918-923
  • 21 Shelly S, Paul P, Bi H. et al. Improving accuracy of myasthenia gravis autoantibody testing by reflex algorithm. Neurology 2020; 95 (22) e3002-e3011
  • 22 Shelly S, Mills JR, Dubey D. et al. Clinical utility of striational antibodies in paraneoplastic and myasthenia gravis paraneoplastic panels. Neurology 2021; 96 (24) e2966-e2976
  • 23 Strijbos E, Verschuuren JJGM, Kuks JBM. Serum acetylcholine receptor antibodies before the clinical onset of myasthenia gravis. J Neuromuscul Dis 2018; 5 (02) 261-264
  • 24 Ozawa Y, Uzawa A, Yasuda M. et al. Long-term outcomes and prognostic factors in generalized myasthenia gravis. J Neurol 2021; 268 (10) 3781-3788
  • 25 Murai H. Japanese clinical guidelines for myasthenia gravis: putting into practice. Clin Exp Neuroimmunol 2015; 6: 21-31
  • 26 Wolfe GI, Kaminski HJ, Aban IB. et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med 2016; 375: 511-522
  • 27 Wolfe GI, Kaminski HJ, Aban IB. et al; MGTX Study Group. Long-term effect of thymectomy plus prednisone versus prednisone alone in patients with non-thymomatous myasthenia gravis: 2-year extension of the MGTX randomised trial. Lancet Neurol 2019; 18 (03) 259-268
  • 28 Cron MA, Maillard S, Villegas J. et al. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci 2018; 1412 (01) 137-145
  • 29 Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic germinal centers and corticosteroids in myasthenia gravis: an immunopathological study in 1035 cases and a critical review. Clin Rev Allergy Immunol 2017; 52 (01) 108-124
  • 30 Sarkkinen J, Dunkel J, Tuulasvaara A. et al. Ectopic germinal centers in the thymus accurately predict prognosis of myasthenia gravis after thymectomy. Mod Pathol 2022; 35 (09) 1168-1174
  • 31 Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7 (03) 365-368
  • 32 Bartoccioni E, Scuderi F, Minicuci GM, Marino M, Ciaraffa F, Evoli A. Anti-MuSK antibodies: correlation with myasthenia gravis severity. Neurology 2006; 67 (03) 505-507
  • 33 Huang Q, Li F, Zhao S. Spotlight on MuSK positive myasthenia gravis: clinical characteristics, treatment and outcomes. BMC Neurol 2022; 22 (01) 73
  • 34 Zhao S, Zhang K, Ren K. et al. Clinical features, treatment and prognosis of MuSK antibody-associated myasthenia gravis in Northwest China: a single-centre retrospective cohort study. BMC Neurol 2021; 21 (01) 428
  • 35 Zhou L, McConville J, Chaudhry V. et al. Clinical comparison of muscle-specific tyrosine kinase (MuSK) antibody-positive and -negative myasthenic patients. Muscle Nerve 2004; 30 (01) 55-60
  • 36 Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve 2011; 44 (01) 36-40
  • 37 Farrugia ME, Robson MD, Clover L. et al. MRI and clinical studies of facial and bulbar muscle involvement in MuSK antibody-associated myasthenia gravis. Brain 2006; 129 (Pt 6): 1481-1492
  • 38 Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12 (09) 875-884
  • 39 Sanders DB, Juel VC. MuSK-antibody positive myasthenia gravis: questions from the clinic. J Neuroimmunol 2008; 201–202: 85-89
  • 40 Hehir MK, Hobson-Webb LD, Benatar M. et al. Rituximab as treatment for anti-MuSK myasthenia gravis: Multicenter blinded prospective review. Neurology 2017; 89 (10) 1069-1077
  • 41 Kim N, Stiegler AL, Cameron TO. et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 2008; 135 (02) 334-342
  • 42 Yu Z, Zhang M, Jing H. et al. Characterization of LRP4/Agrin antibodies from a patient with myasthenia gravis. Neurology 2021; 97 (10) e975-e987
  • 43 Rivner MH, Quarles BM, Pan JX. et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: a multicenter study. Muscle Nerve 2020; 62 (03) 333-343
  • 44 Romi F, Hong Y, Gilhus NE. Pathophysiology and immunological profile of myasthenia gravis and its subgroups. Curr Opin Immunol 2017; 49: 9-13
  • 45 Romi F, Gilhus NE, Varhaug JE, Myking A, Aarli JA. Disease severity and outcome in thymoma myasthenia gravis: a long-term observation study. Eur J Neurol 2003; 10 (06) 701-706
  • 46 Comacchio GM, Marulli G, Mammana M, Natale G, Schiavon M, Rea F. Surgical decision making: thymoma and myasthenia gravis. Thorac Surg Clin 2019; 29 (02) 203-213
  • 47 Álvarez-Velasco R, Gutiérrez-Gutiérrez G, Trujillo JC. et al. Clinical characteristics and outcomes of thymoma-associated myasthenia gravis. Eur J Neurol 2021; 28 (06) 2083-2091
  • 48 Sanders DB, Wolfe GI, Benatar M. et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 2016; 87 (04) 419-425
  • 49 Narayanaswami P, Sanders DB, Wolfe G. et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology 2021; 96 (03) 114-122
  • 50 Howard Jr JF, Utsugisawa K, Benatar M. et al; REGAIN Study Group. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. [published correction appears in Lancet Neurol. 2017 Dec;16(12):954] Lancet Neurol 2017; 16 (12) 976-986
  • 51 Vu T, Meisel A, Mantegazza R. et al. Terminal complement inhibitor ravulizumab in generalized myasthenia gravis. NEJM Evid 2022; 1: 2100066
  • 52 Cutter G, Xin H, Aban I. et al. Cross-sectional analysis of the myasthenia gravis patient registry: disability and treatment. Muscle Nerve 2019; 60 (06) 707-715
  • 53 Hansen JS, Danielsen DH, Somnier FE. et al. Mortality in myasthenia gravis: a nationwide population-based follow-up study in Denmark. Muscle Nerve 2016; 53 (01) 73-77
  • 54 Jeong S, Noh Y, Oh IS, Hong YH, Shin JY. Survival, prognosis, and clinical feature of refractory myasthenia gravis: a 15-year nationwide cohort study. J Korean Med Sci 2021; 36 (39) e242
  • 55 Jani-Acsadi A, Lisak RP. Myasthenic crisis: guidelines for prevention and treatment. J Neurol Sci 2007; 261 (1–2): 127-133
  • 56 Thomas CE, Mayer SA, Gungor Y. et al. Myasthenic crisis: clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology 1997; 48 (05) 1253-1260
  • 57 Sakaguchi H, Yamashita S, Hirano T. et al. Myasthenic crisis patients who require intensive care unit management. Muscle Nerve 2012; 46 (03) 440-442
  • 58 Nelke C, Stascheit F, Eckert C. et al. Independent risk factors for myasthenic crisis and disease exacerbation in a retrospective cohort of myasthenia gravis patients. J Neuroinflammation 2022; 19 (01) 89
  • 59 Neumann B, Angstwurm K, Mergenthaler P. et al. Myasthenic crisis demanding mechanical ventilation: a multicenter analysis of 250 cases. [published correction appears in Neurology. 2020 Apr 21;94(16):724. Schneider, Haucke [corrected to Schneider, Hauke]]. Neurology 2020; 94 (03) e299-e313
  • 60 Alshekhlee A, Miles JD, Katirji B, Preston DC, Kaminski HJ. Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals. Neurology 2009; 72 (18) 1548-1554
  • 61 König N, Stetefeld HR, Dohmen C. et al; German Myasthenic Crisis Study Group. MuSK-antibodies are associated with worse outcome in myasthenic crisis requiring mechanical ventilation. J Neurol 2021; 268 (12) 4824-4833
  • 62 Juel VC, Massey JM. Myasthenia gravis. Orphanet J Rare Dis 2007; 2: 44
  • 63 Chiang LM, Darras BT, Kang PB. Juvenile myasthenia gravis. Muscle Nerve 2009; 39 (04) 423-431
  • 64 Wang H, Su Z, Luo C. et al. The effect of steroid treatment and thymectomy on bone age and height development in juvenile myasthenia gravis. Neurol Sci 2013; 34 (12) 2173-2180
  • 65 Li Z, Li F, Zhang H. et al. Outcomes of juvenile myasthenia gravis: a comparison of robotic thymectomy with medication treatment. Ann Thorac Surg 2022; 113 (01) 295-301
  • 66 Gilhus NE, Nacu A, Andersen JB, Owe JF. Myasthenia gravis and risks for comorbidity. Eur J Neurol 2015; 22 (01) 17-23
  • 67 Laakso SM, Myllynen C, Strbian D, Atula S. Comorbidities worsen the prognosis of generalized myasthenia gravis post-thymectomy. J Neurol Sci 2021; 427: 117549
  • 68 Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. Centers for Disease Control and Prevention. October 22, 2022. Accessed October, 27, 2022 at: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html
  • 69 People with Certain Medical Conditions. Centers for Disease Control and Prevention. October 19, 2022. Accessed October 27, 2022 at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
  • 70 Camelo-Filho AE, Silva AMS, Estephan EP. et al. Myasthenia gravis and COVID-19: clinical characteristics and outcomes. Front Neurol 2020; 11: 1053
  • 71 Muppidi S, Guptill JT, Jacob S. et al; CARE-MG Study Group. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol 2020; 19 (12) 970-971
  • 72 Gungor Tuncer O, Deymeer F. Clinical course and outcome of an outpatient clinic population with myasthenia gravis and COVID-19. Muscle Nerve 2022; 65 (04) 447-452