Klin Monbl Augenheilkd 2018; 235(02): 157-162
DOI: 10.1055/s-0044-101618
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Mitochondriale Dysfunktion und Bedeutung von Coenzym Q10 beim Glaukom

Mitochondrial Dysfunctions and Role of Coenzyme Q10 in Patients with Glaucoma
Carl Erb
1   Augenklinik am Wittenbergplatz, Berlin
,
Katarzyna Konieczka
2   Augenheilkunde, Universität Basel, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht 14 January 2018

akzeptiert 21 January 2018

Publication Date:
15 February 2018 (online)

Zusammenfassung

Die mitochondriale Funktion ist mit zahlreichen Aspekten der Gesundheit des Auges eng verknüpft. Ursächlich für mitochondriale Dysfunktionen scheint ein Ungleichgewicht zwischen der Bildung von Energie und der Menge an freien Radikalen zu sein. Dadurch kommt es neben einem Energiemangel zu einer erhöhten oxidativen Belastung der betroffenen Augengewebe mit der Folge einer Vielzahl von ophthalmologischen Beeinträchtigungen. Dabei wird zwischen primären und sekundären mitochondrialen Augenerkrankungen unterschieden. Primäre mitochondriale Erkrankungen wie bspw. die Leberʼsche hereditäre Optikusatrophie (LHON), die Retinitis pigmentosa und die chronisch progressive externe Ophthalmoplegie sind die Folge von direkten Schädigungen der mitochondrialen Funktion durch defekte Gene auf der mitochondrialen DNA (mtDNA) oder auf der nukleären DNA (nDNA). Demgegenüber sind sekundäre mitochondriale Dysfunktionen vor allem auf Umwelteinflüsse zurückzuführen. In jüngster Zeit häufen sich Hinweise darauf, dass auch mitochondriale Dysfunktionen bei vielen häufig auftretenden Augenerkrankungen wie dem Glaukom, dem „Trockenen Auge“, der diabetischen Retinopathie, der Katarakt und der altersabhängigen Makuladegeneration (AMD) eine wichtige Rolle spielen. Dieser Beitrag fasst den derzeitigen Kenntnisstand zu mitochondrialen Dysfunktionen und zur Rolle von Coenzym Q10 (CoQ10) als mögliche Therapieoption beim Glaukom zusammen.

Abstract

Mitochondrial function is closely linked to numerous aspects of eye health. Imbalance between the creation of energy and the development of reactive oxygen species (ROS) seems to be the cause of the development of mitochondrial dysfunctions. As a result of this energy deficit, the level of oxidative stress in the eye tissues increases, leading to numerous ophthalmic impairments. It is important to distinguish between primary mitochondrial eye diseases and secondary mitochondrial changes. Primary mitochondrial eye diseases, for example Leberʼs hereditary optic atrophy (LHON), retinitis pigmentosa and chronic progressive external ophthalmoplegia are caused by direct damage to mitochondrial function induced by defective genes, either located on mitochondrial DNA (mtDNA) or the DNA of the nucleus (nDNA). In contrast, secondary mitochondrial dysfunctions are caused by environmental factors. In recent years, there has been growing evidence that mitochondrial dysfunctions play an important role in many common eye diseases, such as glaucoma, dry eye, diabetic retinopathy, cataract and age-related macular degeneration (AMD). This article summarises current knowledge of mitochondrial dysfunctions and the role of coenzyme Q10 (CoQ10) as a possible treatment option – with a special focus on glaucoma.

 
  • Literatur

  • 1 Ohia SE, Opere CA, Leday AM. Pharmacological consequences of oxidative stress in ocular tissues. Mutat Res 2005; 579: 22-36
  • 2 Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 2016: 3164734 doi:10.1155/2016/3164734
  • 3 Beatty S, Koh H, Phil M. et al. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000; 45: 115-134
  • 4 Uchino Y, Kawakita T, Miyazawa M. et al. Oxidative stress induced inflammation initiates functional decline of tear production. PLoS One 2012; 7: e45805 doi:10.1371/journal.pone.0045805
  • 5 Voet D, Voet JG, Pratt CW. eds. Fundamentals of Biochemistry. 2nd ed.. ed. Indianapolis: John Wiley and Sons; 2006
  • 6 Manella CA. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 2006; 1762: 140-147
  • 7 Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298-300
  • 8 Gerschman R, Gilbert DL, Nye SW. et al. Influence of x-irradiation on oxygen poisoning in mice. Proc Soc Exp Biol Med 1954; 86: 27-29
  • 9 Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95
  • 10 Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010; 45: 466-472
  • 11 Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012: 646354 doi:10.1155/2012/646354
  • 12 Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol 2017; DOI: 10.1111/aos.13526.
  • 13 Feher J, Kovacs I, Artico M. et al. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 2006; 27: 983-993
  • 14 Kong GY, Van Bergen NJ, Trounce IA. et al. Mitochondrial dysfunction and glaucoma. J Glaucoma 2009; 18: 93-100
  • 15 Calderon GD, Juarez OH, Hernandez GE. et al. Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond) 2017; 31: 1122-1130
  • 16 Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 2533-2541
  • 17 Khawaja AP, Cooke Bailey JN, Kang JH. et al. Assessing the association of mitochondrial genetic variation with primary open-angle glaucoma using gene-set analyses. Invest Ophthalmol Vis Sci 2016; 57: 5046-5052
  • 18 Benoist dʼAzy C, Pereira B, Chiambaretta F. et al. Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS One 2016; 11: e0166915 doi:10.1371/journal.pone.0166915
  • 19 Kamel K, Farrell M, OʼBrien C. Mitochondrial dysfunction in ocular disease: Focus on glaucoma. Mitochondrion 2017; 35: 44-53
  • 20 Zhao J, Wang S, Zhong W. et al. Oxidative stress in the trabecular meshwork (Review). Int J Mol Med 2016; 38: 995-1002
  • 21 McElnea EM, Quill B, Docherty NG. et al. Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol Vis 2011; 17: 1182-1191
  • 22 Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006; 25: 490-513
  • 23 Mittag TW, Danias J, Pohorenec G. et al. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000; 41: 3451-3459
  • 24 Tatton WG, Chalmers-Redman RM, Sud A. et al. Maintaining mitochondrial membrane impermeability. An opportunity for new therapy in glaucoma?. Surv Ophthalmol 2001; 45 (Suppl.) S277-S283
  • 25 Alvarado JA, Yeh RF, Franse-Carman L. et al. Interactions between endothelia of the trabecular meshwork and of Schlemmʼs canal: a new insight into the regulation of aqueous outflow in the eye. Trans Am Ophthalmol Soc 2005; 103: 148-162
  • 26 Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 2014; 71: 2197-2218
  • 27 He Y, Ge J, Tombran-Tink J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci 2008; 49: 4912-4922
  • 28 Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004; 1660: 171-199
  • 29 Nucci C, Tartaglione R, Cerulli A. et al. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat. Int Rev Neurobiol 2007; 82: 397-406
  • 30 Davis BM, Tian K, Pahlitzsch M. et al. Topical coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017; 36: 114-123 doi:10.1016/j.mito.2017.05.010
  • 31 Postorino EI, Rania L, Aragona E. et al. Efficacy of eyedrops containing cross-linked hyaluronic acid and coenzyme Q10 in treating patients with mild to moderate dry eye. Eur J Ophthalmol 2017; DOI: 10.5301/ejo.5001011.
  • 32 Fogagnolo P, Sacchi M, Ceresara G. et al. The effects of topical coenzyme Q10 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate after cataract surgery: a clinical and in vivo confocal study. Ophthalmologica 2013; 229: 26-31
  • 33 Blasi MA, Bovina C, Carella G. et al. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration?. Ophthalmologica 2001; 215: 51-54
  • 34 Ates O, Bilen H, Keles S. et al. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy. Int J Ophthalmol 2013; 6: 675-679
  • 35 Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm 2009; 372: 66-75
  • 36 Gueven N, Woolley K, Smith J. Border between natural product and drug: Comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biol 2015; 4: 289-295
  • 37 Qu J, Kaufman Y, Washington I. Coenzyme Q10 in the human retina. Invest Ophthalmol Vis Sci 2009; 50: 1814-1818
  • 38 Qu J, Ma L, Washington I. Retinal coenzyme Q10 in the bovine eye. Biofactors 2011; 37: 393-398 doi:10.1002/biof.166
  • 39 Fato R, Bergami C, Leoni S. et al. Coenzyme Q10 vitreous levels after administration of coenzyme Q10 eyedrops in patients undergoing vitrectomy. Acta Ophthalmol 2010; 88: e150-e151
  • 40 Hirano T, Iseki K. Interaction of coenzyme Q10 with the intestinal drug transporter P-glycoprotein. J Agric Food Chem 2008; 56: 6923-6927
  • 41 Wu JHY, Ward NC, Indrawan AP. et al. Effects of alpha-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation in type 2 diabetes. Clin Chem 2007; 53: 511-519
  • 42 Lulli M, Witort E, Papucci L. et al. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Invest Ophthalmol Vis Sci 2012; 53: 8295-8302
  • 43 Lee D, Shim MS, Kim KY. et al. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 2014; (55) 993-1005
  • 44 Parisi V, Centofanti M, Gandolfi S. et al. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma 2014; 23: 391-404