Semin Musculoskelet Radiol 2024; 28(03): 282-292
DOI: 10.1055/s-0044-1781470
Review Article

Advanced Imaging of Total Knee Arthroplasty

1   Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
,
1   Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
› Author Affiliations

Abstract

The prevalence of total knee arthroplasty (TKA) is increasing with the aging population. Although long-term results are satisfactory, suspected postoperative complications often require imaging with the implant in place. Advancements in computed tomography (CT), such as tin prefiltration, metal artifact reduction algorithms, dual-energy CT with virtual monoenergetic imaging postprocessing, and the application of cone-beam CT and photon-counting detector CT, allow a better depiction of the tissues adjacent to the metal. For magnetic resonance imaging (MRI), high bandwidth (BW) optimization, the combination of view angle tilting and high BW, as well as multispectral imaging techniques with multiacquisition variable-resonance image combination or slice encoding metal artifact correction, have significantly improved imaging around metal implants, turning MRI into a useful clinical tool for patients with suspected TKA complications.



Publication History

Article published online:
20 May 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rissanen P, Aro S, Slätis P, Sintonen H, Paavolainen P. Health and quality of life before and after hip or knee arthroplasty. J Arthroplasty 1995; 10 (02) 169-175
  • 2 Singh JA. Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop J 2011; 5: 80-85
  • 3 Scott AM. Total knee replacement and imaging. Radiol Technol 2015; 87 (01) 65-86
  • 4 Hofmann S, Seitlinger G, Djahani O, Pietsch M. The painful knee after TKA: a diagnostic algorithm for failure analysis. Knee Surg Sports Traumatol Arthrosc 2011; 19 (09) 1442-1452
  • 5 Buckwalter KA, Lin C, Ford JM. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol 2011; 15 (04) 309-319
  • 6 Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics 2004; 24 (06) 1679-1691
  • 7 Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018; 38 (02) 450-461
  • 8 Engel KJ, Herrmann C, Zeitler G. X-ray scattering in single- and dual-source CT. Med Phys 2008; 35 (01) 318-332
  • 9 Koh YG, Park KM, Lee JA, Nam JH, Lee HY, Kang KT. Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: a review. Mater Sci Eng C 2019; 100: 70-81
  • 10 Zimel MN, Hwang S, Riedel ER, Healey JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skeletal Radiol 2015; 44 (09) 1317-1325
  • 11 Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH. Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics 2006; 26 (Suppl. 01) S97-S110
  • 12 Haramati N, Staron RB, Mazel-Sperling K. et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 1994; 18 (06) 429-434
  • 13 Lee MJ, Kim S, Lee SA. et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007; 27 (03) 791-803
  • 14 Hackenbroch C, Schnaidt S, Halt D, Wilde F, Beer M, Wunderlich A. Dose reduction in dental CT: a phantom study with special focus on tin filter technique. AJR Am J Roentgenol 2020; 215 (04) 945-953
  • 15 Zhou W, Bartlett DJ, Diehn FE. et al. Reduction of metal artifacts and improvement in dose efficiency using photon-counting detector computed tomography and tin filtration. Invest Radiol 2019; 54 (04) 204-211
  • 16 Patzer TS, Kunz AS, Huflage H. et al. Rotational alignment of the lower extremity in the presence of total knee endoprosthesis: reproducibility of torsion analyses using ultra-low-dose photon-counting CT. Eur J Radiol 2023; 167: 111055
  • 17 Stern C, Wanivenhaus F, Rosskopf AB, Farshad M, Sutter R. Superior metal artifact reduction of tin-filtered low-dose CT in imaging of lumbar spinal instrumentation compared to conventional computed tomography. Skeletal Radiol 2023 October 7 (Epub ahead of print)
  • 18 Jeong S, Kim SH, Hwang EJ, Shin CI, Han JK, Choi BI. Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT: phantom and clinical study results. AJR Am J Roentgenol 2015; 204 (02) 307-317
  • 19 Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. Radiology 1987; 164 (02) 576-577
  • 20 Mahnken AH, Raupach R, Wildberger JE. et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 2003; 38 (12) 769-775
  • 21 Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys 2010; 37 (02) 620-628
  • 22 Yu L, Li H, Mueller J. et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest Radiol 2009; 44 (11) 691-696
  • 23 Chae HD, Hong SH, Shin M, Choi JY, Yoo HJ. Combined use of virtual monochromatic images and projection-based metal artifact reduction methods in evaluation of total knee arthroplasty. Eur Radiol 2020; 30 (10) 5298-5307
  • 24 Choo HJ, Lee SJ, Kim DW. et al. Comparison of the quality of various polychromatic and monochromatic dual-energy CT images with or without a metal artifact reduction algorithm to evaluate total knee arthroplasty. Korean J Radiol 2021; 22 (08) 1341-1351
  • 25 Long Z, Bruesewitz MR, DeLone DR. et al. Evaluation of projection- and dual-energy-based methods for metal artifact reduction in CT using a phantom study. J Appl Clin Med Phys 2018; 19 (04) 252-260
  • 26 Schwarz GM, Huber S, Wassipaul C. et al. Influence of scan parameters of single and dual-energy CT protocols in combination with metal artifact suppression algorithms for THA: an ex vivo study. J Bone Joint Surg Am 2023; 105 (08) 620-629
  • 27 Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility. AJR Am J Roentgenol 2014; 203 (04) 788-795
  • 28 Chang W, Lee JM, Lee K. et al. Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Invest Radiol 2013; 48 (08) 598-606
  • 29 Messerli M, Rengier F, Desbiolles L. et al. Impact of advanced modeled iterative reconstruction on coronary artery calcium quantification. Acad Radiol 2016; 23 (12) 1506-1512
  • 30 Forghani R, De Man B, Gupta R. Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: Part 2. Neuroimaging Clin N Am 2017; 27 (03) 385-400
  • 31 Neuhaus V, Große Hokamp N, Abdullayev N. et al. Metal artifact reduction by dual-layer computed tomography using virtual monoenergetic images. Eur J Radiol 2017; 93: 143-148
  • 32 Johnson TR, Krauss B, Sedlmair M. et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17 (06) 1510-1517
  • 33 Große Hokamp N, Neuhaus V, Abdullayev N. et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms. Skeletal Radiol 2018; 47 (02) 195-201
  • 34 Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol 2014; 43 (05) 567-575
  • 35 Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 2011; 259 (01) 257-262
  • 36 Pessis E, Campagna R, Sverzut JM. et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 2013; 33 (02) 573-583
  • 37 Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 2007; 242 (01) 109-119
  • 38 Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: filtered back projection versus a commercial model-based iterative reconstruction algorithm. Radiology 2017; 284 (03) 777-787
  • 39 Zhang Y, Yan H, Jia X, Yang J, Jiang SB, Mou X. A hybrid metal artifact reduction algorithm for x-ray CT. Med Phys 2013; 40 (04) 041910
  • 40 Boudabbous S, Arditi D, Paulin E, Syrogiannopoulou A, Becker C, Montet X. Model-based iterative reconstruction (MBIR) for the reduction of metal artifacts on CT. AJR Am J Roentgenol 2015; 205 (02) 380-385
  • 41 Higashigaito K, Angst F, Runge VM, Alkadhi H, Donati OF. Metal artifact reduction in pelvic computed tomography with hip prostheses: comparison of virtual monoenergetic extrapolations from dual-energy computed tomography and an iterative metal artifact reduction algorithm in a phantom study. Invest Radiol 2015; 50 (12) 828-834
  • 42 Laukamp KR, Lennartz S, Neuhaus VF. et al. CT metal artifacts in patients with total hip replacements: for artifact reduction monoenergetic reconstructions and post-processing algorithms are both efficient but not similar. Eur Radiol 2018; 28 (11) 4524-4533
  • 43 D'Angelo T, Cicero G, Mazziotti S. et al. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 2019; 92 (1098): 20180546
  • 44 Do TD, Sutter R, Skornitzke S, Weber MA. CT and MRI techniques for imaging around orthopedic hardware. Röfo 2018; 190 (01) 31-41
  • 45 Huang JY, Kerns JR, Nute JL. et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol 2015; 60 (03) 1047-1067
  • 46 Martin SS, Weidinger S, Czwikla R. et al. Iodine and fat quantification for differentiation of adrenal gland adenomas from metastases using third-generation dual-source dual-energy computed tomography. Invest Radiol 2018; 53 (03) 173-178
  • 47 Dartus J, Jacques T, Martinot P. et al. The advantages of cone-beam computerised tomography (CT) in pain management following total knee arthroplasty, in comparison with conventional multi-detector CT. Orthop Traumatol Surg Res 2021; 107 (03) 102874
  • 48 Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda J, Schmidt B. Photon-counting CT review. Phys Med 2020; 79: 126-136
  • 49 Leng S, Bruesewitz M, Tao S. et al. Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics 2019; 39 (03) 729-743
  • 50 Rajendran K, Petersilka M, Henning A. et al. Full field-of-view, high-resolution, photon-counting detector CT: technical assessment and initial patient experience. Phys Med Biol 2021;66(20): Doi: 10.1088/1361-6560/ac155e
  • 51 Baffour FI, Glazebrook KN, Ferrero A. et al. Photon-counting detector CT for musculoskeletal imaging: a clinical perspective. AJR Am J Roentgenol 2023; 220 (04) 551-560
  • 52 Bette SJ, Braun FM, Haerting M. et al. Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy-integrating CT. Eur Radiol 2022; 32 (05) 2930-2936
  • 53 Grunz JP, Huflage H, Heidenreich JF. et al. Image quality assessment for clinical cadmium telluride-based photon-counting computed tomography detector in cadaveric wrist imaging. Invest Radiol 2021; 56 (12) 785-790
  • 54 Marth AA, Marcus RP, Feuerriegel GC, Nanz D, Sutter R. Photon-counting detector CT versus energy-integrating detector CT of the lumbar spine: comparison of radiation dose and image quality. AJR Am J Roentgenol 2023; 222 (01) DOI: 10.2214/AJR.23.29950.
  • 55 Patzer TS, Kunz AS, Huflage H. et al. Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT. Sci Rep 2023; 13 (01) 8226
  • 56 Rajendran K, Voss BA, Zhou W. et al. Dose reduction for sinus and temporal bone imaging using photon-counting detector CT with an additional tin filter. Invest Radiol 2020; 55 (02) 91-100
  • 57 Rau A, Straehle J, Stein T. et al. Photon-counting computed tomography (PC-CT) of the spine: impact on diagnostic confidence and radiation dose. Eur Radiol 2023; 33 (08) 5578-5586
  • 58 Lau LCM, Lee WYW, Butler APH. et al. Multi-energy spectral photon-counting computed tomography (MARS) for detection of arthroplasty implant failure. Sci Rep 2021; 11 (01) 1554
  • 59 Woisetschläger M, Booij R, Tesselaar E, Oei EHG, Schilcher J. Improved visualization of the bone-implant interface and osseointegration in ex vivo acetabular cup implants using photon-counting detector CT. Eur Radiol Exp 2023; 7 (01) 19
  • 60 Layer YC, Mesropyan N, Kupczyk PA. et al. Combining iterative metal artifact reduction and virtual monoenergetic images severely reduces hip prosthesis-associated artifacts in photon-counting detector CT. Sci Rep 2023; 13 (01) 8955
  • 61 Sharma S, Batta V, Chidambaranathan M. et al. Knee implant identification by fine-tuning deep learning models. Indian J Orthop 2021; 55 (05) 1295-1305
  • 62 Yi PH, Wei J, Kim TK. et al. Automated detection & classification of knee arthroplasty using deep learning. Knee 2020; 27 (02) 535-542
  • 63 Kim B, Lee DW, Lee S. et al. Automated detection of surgical implants on plain knee radiographs using a deep learning algorithm. Medicina (Kaunas) 2022; 58 (11) 1677
  • 64 Steele JR, Jang SJ, Brilliant ZR. et al. Deep learning phenotype automation and cohort analyses of 1,946 knees using the coronal plane alignment of the knee classification. J Arthroplasty 2023; 38 (6S): S215-S221 , 221.e1
  • 65 Klemt C, Uzosike AC, Cohen-Levy WB, Harvey MJ, Subih MA, Kwon YM. The ability of deep learning models to identify total hip and knee arthroplasty implant design from plain radiographs. J Am Acad Orthop Surg 2022; 30 (09) 409-415
  • 66 [No authors listed]. Deep learning method for hip knee ankle angle prediction on postoperative full-limb radiographs of total knee arthroplasty patients. Annu Int Conf IEEE Eng Med Biol Soc 2022; 2022: 5070-5073
  • 67 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 68 Graf H, Lauer UA, Berger A, Schick F. RF artifacts caused by metallic implants or instruments which get more prominent at 3 T: an in vitro study. Magn Reson Imaging 2005; 23 (03) 493-499
  • 69 Nardo L, Han M, Kretzschmar M. et al. Erratum to: Metal artifact suppression at the hip: diagnostic performance at 3.0 T versus 1.5 Tesla. Skeletal Radiol 2015; 44 (11) 1617
  • 70 Nardo L, Han M, Kretzschmar M. et al. Metal artifact suppression at the hip: diagnostic performance at 3.0 T versus 1.5 Tesla. Skeletal Radiol 2015; 44 (11) 1609-1616
  • 71 Venook RD, Matter NI, Ramachandran M. et al. Prepolarized magnetic resonance imaging around metal orthopedic implants. Magn Reson Med 2006; 56 (01) 177-186
  • 72 Germann C, Nanz D, Sutter R. Magnetic resonance imaging around metal at 1.5.  Tesla: techniques from basic to advanced and clinical impact. Invest Radiol 2021; 56 (11) 734-748
  • 73 Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol 2017; 46 (07) 897-908
  • 74 Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging 2017; 46 (04) 972-991
  • 75 Sze G, Kawamura Y, Negishi C. et al. Fast spin-echo MR imaging of the cervical spine: influence of echo train length and echo spacing on image contrast and quality. AJNR Am J Neuroradiol 1993; 14 (05) 1203-1213
  • 76 Bachschmidt TJ, Sutter R, Jakob PM, Pfirrmann CW, Nittka M. Knee implant imaging at 3.  Tesla using high-bandwidth radiofrequency pulses. J Magn Reson Imaging 2015; 41 (06) 1570-1580
  • 77 Toms AP, Smith-Bateman C, Malcolm PN, Cahir J, Graves M. Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Clin Radiol 2010; 65 (06) 447-452
  • 78 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15 (01) 7-11
  • 79 Butts K, Pauly JM, Gold GE. Reduction of blurring in view angle tilting MRI. Magn Reson Med 2005; 53 (02) 418-424
  • 80 Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging 2010; 32 (04) 773-787
  • 81 Khodarahmi I, Nittka M, Fritz J. Leaps in technology: advanced MR imaging after total hip arthroplasty. Semin Musculoskelet Radiol 2017; 21 (05) 604-615
  • 82 Kumar NM, de Cesar Netto C, Schon LC, Fritz J. Metal artifact reduction magnetic resonance imaging around arthroplasty implants: the negative effect of long echo trains on the implant-related artifact. Invest Radiol 2017; 52 (05) 310-316
  • 83 Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol 2012; 199 (06) W735-W742
  • 84 Del Grande F, Santini F, Herzka DA. et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (01) 217-23
  • 85 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61 (02) 381-390
  • 86 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62 (01) 66-76
  • 87 Chen CA, Chen W, Goodman SB. et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (05) 1121-1127
  • 88 Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265 (01) 204-214
  • 89 Filli L, Jud L, Luechinger R. et al. Material-dependent implant artifact reduction using SEMAC-VAT and MAVRIC: a prospective MRI phantom study. Invest Radiol 2017; 52 (06) 381-387
  • 90 Agten CA, Del Grande F, Fucentese SF, Blatter S, Pfirrmann CW, Sutter R. Unicompartmental knee arthroplasty MRI: impact of slice-encoding for metal artefact correction MRI on image quality, findings and therapy decision. Eur Radiol 2015; 25 (07) 2184-2193
  • 91 Sutter R, Hodek R, Fucentese SF, Nittka M, Pfirrmann CW. Total knee arthroplasty MRI featuring slice-encoding for metal artifact correction: reduction of artifacts for STIR and proton density-weighted sequences. AJR Am J Roentgenol 2013; 201 (06) 1315-1324
  • 92 Koch KM, Brau AC, Chen W. et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65 (01) 71-82
  • 93 Carl M, Koch K, Du J. MR imaging near metal with undersampled 3D radial UTE-MAVRIC sequences. Magn Reson Med 2013; 69 (01) 27-36
  • 94 Liebl H, Heilmeier U, Lee S. et al. In vitro assessment of knee MRI in the presence of metal implants comparing MAVRIC-SL and conventional fast spin echo sequences at 1.5 and 3 T field strength. J Magn Reson Imaging 2015; 41 (05) 1291-1299
  • 95 Fritz J, Ahlawat S, Demehri S. et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676