RSS-Feed abonnieren
DOI: 10.1055/s-0044-1791512
Modulating Immune Responses: The Double-Edged Sword of Platelet CD40L

Abstract
The CD40–CD40L receptor ligand pair plays a fundamental role in the modulation of the innate as well as the adaptive immune response, regulating monocyte, T and B cell activation, and antibody isotype switching. Although the expression and function of the CD40–CD40L dyad is mainly attributed to the classical immune cells, the majority of CD40L is expressed by activated platelets, either in a membrane-bound form or shed as soluble molecules in the circulation. Platelet-derived CD40L is involved in the communication with different immune cell subpopulations and regulates their functions effectively. Thus, platelet CD40L contributes to the containment and clearance of bacterial and viral infections, and additionally guides leukocytes to sites of infection. However, platelet CD40L promotes inflammatory cellular responses also in a pathophysiological context. For example, in HIV infections, platelet CD40L is supportive of neuronal inflammation, damage, and finally HIV-related dementia. In sepsis, platelet CD40L can induce extensive endothelial and epithelial damage resulting in barrier dysfunction of the gut, whereby the translocation of microbiota into the circulation further aggravates the uncontrolled systemic inflammation. Nevertheless, a distinct platelet subpopulation expressing CD40L under septic conditions can attenuate systemic inflammation and reduce mortality in mice. This review focuses on recent findings in the field of platelet CD40L biology and its physiological and pathophysiological implications, and thereby highlights platelets as vital immune cells that are essential for a proper immune surveillance. In this context, platelet CD40L proves to be an interesting target for various inflammatory diseases. However, either an agonism or a blockade of CD40L needs to be well balanced since both the approaches can cause severe adverse events, ranging from hyperinflammation to immune deficiency. Thus, an interference in CD40L activities should be likely done in a context-dependent and timely restricted manner.
Keywords
platelets - CD40L-CD40 - inflammation - hemostasis - bacterial & viral infection - cancer - platelet transfusionPublikationsverlauf
Artikel online veröffentlicht:
08. Oktober 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L. Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help). J Exp Med 1992; 175 (04) 1091-1101
- 2 Noelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci U S A 1992; 89 (14) 6550-6554
- 3 Lesley R, Kelly LM, Xu Y, Cyster JG. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc Natl Acad Sci U S A 2006; 103 (28) 10717-10722
- 4 Armitage RJ, Fanslow WC, Strockbine L. et al. Molecular and biological characterization of a murine ligand for CD40. Nature 1992; 357 (6373) 80-82
- 5 Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001; 58 (01) 4-43
- 6 Roy M, Waldschmidt T, Aruffo A, Ledbetter JA, Noelle RJ. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol 1993; 151 (05) 2497-2510
- 7 Graf D, Korthäuer U, Mages HW, Senger G, Kroczek RA. Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol 1992; 22 (12) 3191-3194
- 8 Gauchat JF, Aubry JP, Mazzei G. et al. Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett 1993; 315 (03) 259-266
- 9 André P, Prasad KSS, Denis CV. et al. CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 2002; 8 (03) 247-252
- 10 El Fakhry Y, Alturaihi H, Yacoub D. et al. Functional interaction of CD154 protein with α5β1 integrin is totally independent from its binding to αIIbβ3 integrin and CD40 molecules. J Biol Chem 2012; 287 (22) 18055-18066
- 11 Léveillé C, Bouillon M, Guo W. et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 2007; 282 (08) 5143-5151
- 12 Zirlik A, Maier C, Gerdes N. et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 2007; 115 (12) 1571-1580
- 13 Cognasse F, Duchez AC, Audoux E. et al. Platelets as key factors in inflammation: focus on CD40L/CD40. Front Immunol 2022; 13: 825892
- 14 Aloui C, Prigent A, Sut C. et al. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci 2014; 15 (12) 22342-22364
- 15 Yacoub D, Benslimane N, Al-Zoobi L, Hassan G, Nadiri A, Mourad W. CD154 is released from T-cells by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17 in a CD40 protein-dependent manner. J Biol Chem 2013; 288 (50) 36083-36093
- 16 Choi W-S, Jeon O-H, Kim D-S. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost 2010; 8 (06) 1364-1371
- 17 Pietravalle F, Lecoanet-Henchoz S, Blasey H. et al. Human native soluble CD40L is a biologically active trimer, processed inside microsomes. J Biol Chem 1996; 271 (11) 5965-5967
- 18 Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2021; 219: 107709
- 19 Peitsch MC, Jongeneel CVA. A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol 1993; 5 (02) 233-238
- 20 Pullen SS, Labadia ME, Ingraham RH. et al. High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization. Biochemistry 1999; 38 (31) 10168-10177
- 21 Pullen SS, Miller HG, Everdeen DS, Dang TT, Crute JJ, Kehry MR. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 1998; 37 (34) 11836-11845
- 22 André P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 2002; 106 (08) 896-899
- 23 Hassan GS, Salti S, Mourad W. Novel functions of integrins as receptors of CD154: their role in inflammation and apoptosis. Cells 2022; 11 (11) 1747
- 24 Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229 (01) 152-172
- 25 Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. ImmunoTargets Ther 2018; 7: 55-61
- 26 Henn V, Slupsky JR, Gräfe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667) 591-594
- 27 Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92 (09) 1041-1048
- 28 Yacoub D, Hachem A, Théorêt J-F, Gillis MA, Mourad W, Merhi Y. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Arterioscler Thromb Vasc Biol 2010; 30 (12) 2424-2433
- 29 Chakrabarti S, Varghese S, Vitseva O, Tanriverdi K, Freedman JE. CD40 ligand influences platelet release of reactive oxygen intermediates. Arterioscler Thromb Vasc Biol 2005; 25 (11) 2428-2434
- 30 Danese S, de la Motte C, Reyes BMR, Sans M, Levine AD, Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol 2004; 172 (04) 2011-2015
- 31 Langer F, Ingersoll SB, Amirkhosravi A. et al. The role of CD40 in CD40L- and antibody-mediated platelet activation. Thromb Haemost 2005; 93 (06) 1137-1146
- 32 Bendas G, Schlesinger M. The role of CD36/GPIV in platelet biology. . Semin Thromb Hemost 2023
- 33 Henn V, Steinbach S, Büchner K, Presek P, Kroczek RA. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 2001; 98 (04) 1047-1054
- 34 Hachem A, Yacoub D, Zaid Y, Mourad W, Merhi Y. Involvement of nuclear factor κB in platelet CD40 signaling. Biochem Biophys Res Commun 2012; 425 (01) 58-63
- 35 Kojok K, Akoum SE, Mohsen M, Mourad W, Merhi Y. CD40L priming of platelets via NF-κB activation is CD40- and TAK1-dependent. J Am Heart Assoc 2018; 7 (23) e03677
- 36 Danese S, Scaldaferri F, Papa A. et al. CD40L-positive platelets induce CD40L expression de novo in endothelial cells: adding a loop to microvascular inflammation. Arterioscler Thromb Vasc Biol 2004; 24 (09) e162
- 37 Slupsky JR, Kalbas M, Willuweit A, Henn V, Kroczek RA, Müller-Berghaus G. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost 1998; 80 (06) 1008-1014
- 38 Boffa MC, Karmochkine M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus 1998; 7 (Suppl. 02) S120-S125
- 39 Miller DL, Yaron R, Yellin MJ. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J Leukoc Biol 1998; 63 (03) 373-379
- 40 Schönbeck U, Mach F, Sukhova GK. et al. CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol 2000; 156 (01) 7-14
- 41 Vajen T, Benedikter BJ, Heinzmann ACA. et al. Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype. J Extracell Vesicles 2017; 6 (01) 1322454
- 42 Möller K, Adolph O, Grünow J. et al. Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells. Thromb Haemost 2015; 113 (05) 1095-1108
- 43 De Maeyer B, De Meyer SF, Feys HB. et al. The distal carboxyterminal domains of murine ADAMTS13 influence proteolysis of platelet-decorated VWF strings in vivo. J Thromb Haemost 2010; 8 (10) 2305-2312
- 44 Huck V, Schneider MF, Gorzelanny C, Schneider SW. The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb Haemost 2014; 111 (04) 598-609
- 45 Popa M, Tahir S, Elrod J. et al. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction. Proc Natl Acad Sci U S A 2018; 115 (24) E5556-E5565
- 46 Bernardo A, Ball C, Nolasco L, Choi H, Moake JL, Dong JF. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 2005; 3 (03) 562-570
- 47 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116 (20) 4317-4327
- 48 Lacy M, Bürger C, Shami A. et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12 (01) 3754
- 49 Puhr-Westerheide D, Schink SJ, Fabritius M. et al. Neutrophils promote venular thrombosis by shaping the rheological environment for platelet aggregation. Sci Rep 2019; 9 (01) 15932
- 50 Gavins FNE, Li G, Russell J, Perretti M, Granger DN. Microvascular thrombosis and CD40/CD40L signaling. J Thromb Haemost 2011; 9 (03) 574-581
- 51 Li X, Iwai T, Nakamura H. et al. An ultrastructural study of Porphyromonas gingivalis-induced platelet aggregation. Thromb Res 2008; 122 (06) 810-819
- 52 Youssefian T, Drouin A, Massé J-M, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 2002; 99 (11) 4021-4029
- 53 Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9 (06) 1097-1107
- 54 White JG. Why human platelets fail to kill bacteria. Platelets 2006; 17 (03) 191-200
- 55 Aquino-Domínguez AS, Romero-Tlalolini MLA, Torres-Aguilar H, Aguilar-Ruiz SR. Recent advances in the discovery and function of antimicrobial molecules in platelets. Int J Mol Sci 2021; 22 (19) 10230
- 56 Dhawan VK, Yeaman MR, Cheung AL, Kim E, Sullam PM, Bayer AS. Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus. Infect Immun 1997; 65 (08) 3293-3299
- 57 Keane C, Petersen HJ, Tilley D. et al. Multiple sites on Streptococcus gordonii surface protein PadA bind to platelet GPIIbIIIa. Thromb Haemost 2013; 110 (06) 1278-1287
- 58 Fitzgerald JR, Loughman A, Keane F. et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol 2006; 59 (01) 212-230
- 59 Shannon O, Hertzén E, Norrby-Teglund A, Mörgelin M, Sjöbring U, Björck L. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 2007; 65 (05) 1147-1157
- 60 Loughman A, Fitzgerald JR, Brennan MP. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57 (03) 804-818
- 61 Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11 (01) 19
- 62 Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 2005; 129 (01) 101-109
- 63 Tilley DO, Arman M, Smolenski A. et al. Glycoprotein Ibα and FcγRIIa play key roles in platelet activation by the colonizing bacterium, Streptococcus oralis. J Thromb Haemost 2013; 11 (05) 941-950
- 64 Byrne MF, Kerrigan SW, Corcoran PA. et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 2003; 124 (07) 1846-1854
- 65 O'Seaghdha M, van Schooten CJ, Kerrigan SW. et al. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 2006; 273 (21) 4831-4841
- 66 Cox D. Sepsis—it is all about the platelets. Front Immunol 2023; 14: 1210219
- 67 Binsker U, Palankar R, Wesche J. et al. Secreted immunomodulatory proteins of Staphylococcus aureus activate platelets and induce platelet aggregation. Thromb Haemost 2018; 118 (04) 745-757
- 68 Bertling A, Niemann S, Hussain M. et al. Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arterioscler Thromb Vasc Biol 2012; 32 (08) 1979-1990
- 69 Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and Toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int J Mol Sci 2020; 21 (17) 6150
- 70 Assinger A, Laky M, Badrnya S, Esfandeyari A, Volf I. Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4. Thromb Res 2012; 130 (03) e73-e78
- 71 Damien P, Cognasse F, Payrastre B. et al. NF-κB links TLR2 and PAR1 to soluble immunomodulator factor secretion in human platelets. Front Immunol 2017; 8: 85
- 72 Berthet J, Damien P, Hamzeh-Cognasse H. et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 2012; 145 (03) 189-200
- 73 Cognasse F, Lafarge S, Chavarin P, Acquart S, Garraud O. Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med 2007; 33 (02) 382-384
- 74 Cabral-Marques O, Ramos RN, Schimke LF. et al. Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ. J Allergy Clin Immunol 2017; 139 (03) 900-912.e7
- 75 Cabral-Marques O, Klaver S, Schimke LF. et al. First report of the Hyper-IgM syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol 2014; 34 (02) 146-156
- 76 Fontana S, Moratto D, Mangal S. et al. Functional defects of dendritic cells in patients with CD40 deficiency. Blood 2003; 102 (12) 4099-4106
- 77 Elzey BD, Tian J, Jensen RJ. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 2003; 19 (01) 9-19
- 78 Gatti E, Velleca MA, Biedermann BC. et al. Large-scale culture and selective maturation of human Langerhans cells from granulocyte colony-stimulating factor-mobilized CD34+ progenitors. J Immunol 2000; 164 (07) 3600-3607
- 79 Nishat S, Wuescher LM, Worth RG. Platelets enhance dendritic cell responses against Staphylococcus aureus through CD40-CD40L. Infect Immun 2018; 86 (09) e00186 –e18
- 80 Verschoor A, Neuenhahn M, Navarini AA. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12 (12) 1194-1201
- 81 Duffau P, Seneschal J, Nicco C. et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2 (47) 47ra63
- 82 Solanilla A, Pasquet J-M, Viallard J-F. et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood 2005; 105 (01) 215-218
- 83 Zamora C, Toniolo E, Diaz-Torné C. et al. Association of platelet binding to lymphocytes with B cell abnormalities and clinical manifestations in systemic lupus erythematosus. Mediators Inflamm 2019; 2019: 2473164
- 84 Cognasse F, Hamzeh-Cognasse H, Lafarge S. et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol 2007; 35 (09) 1376-1387
- 85 Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 2008; 111 (10) 5028-5036
- 86 Zuchtriegel G, Uhl B, Puhr-Westerheide D. et al. Platelets guide leukocytes to their sites of extravasation. PLoS Biol 2016; 14 (05) e1002459
- 87 Jin R, Yu S, Song Z. et al. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One 2013; 8 (06) e64631
- 88 Arienti S, Barth ND, Dorward DA, Rossi AG, Dransfield I. Regulation of apoptotic cell clearance during resolution of inflammation. Front Pharmacol 2019; 10: 891
- 89 Rossaint J, Thomas K, Mersmann S. et al. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. J Exp Med 2021; 218 (07) e20201353
- 90 Funakoshi S, Taub DD, Anver MR. et al. Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest 1997; 99 (03) 484-491
- 91 Assinger A, Kral JB, Yaiw KC. et al. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014; 34 (04) 801-809
- 92 Marin B, Thiébaut R, Bucher HC. et al. Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS 2009; 23 (13) 1743-1753
- 93 Goehringer F, Bonnet F, Salmon D. et al. Causes of death in HIV-infected individuals with immunovirologic success in a national prospective survey. AIDS Res Hum Retroviruses 2017; 33 (02) 187-193
- 94 Morlat P, Roussillon C, Henard S. et al; ANRS EN20 Mortalité 2010 Study Group. Causes of death among HIV-infected patients in France in 2010 (national survey): trends since 2000. AIDS 2014; 28 (08) 1181-1191
- 95 Heaton RK, Clifford DB, Franklin Jr DR. et al; CHARTER Group. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010; 75 (23) 2087-2096
- 96 Elbirt D, Mahlab-Guri K, Bezalel-Rosenberg S, Gill H, Attali M, Asher I. HIV-associated neurocognitive disorders (HAND). Isr Med Assoc J 2015; 17 (01) 54-59
- 97 Davidson DC, Hirschman MP, Sun A, Singh MV, Kasischke K, Maggirwar SB. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders. PLoS One 2012; 7 (12) e51793
- 98 Wang J, Zhang W, Nardi MA, Li Z. HIV-1 Tat-induced platelet activation and release of CD154 contribute to HIV-1-associated autoimmune thrombocytopenia. J Thromb Haemost 2011; 9 (03) 562-573
- 99 Banerjee M, Huang Y, Joshi S. et al. Platelets endocytose viral particles and are activated via TLR (Toll-like receptor) signaling. Arterioscler Thromb Vasc Biol 2020; 40 (07) 1635-1650
- 100 Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J 2018; 16: 16
- 101 Chaipan C, Soilleux EJ, Simpson P. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80 (18) 8951-8960
- 102 Ramirez SH, Fan S, Dykstra H. et al. Dyad of CD40/CD40 ligand fosters neuroinflammation at the blood-brain barrier and is regulated via JNK signaling: implications for HIV-1 encephalitis. J Neurosci 2010; 30 (28) 9454-9464
- 103 Singh MV, Davidson DC, Kiebala M, Maggirwar SB. Detection of circulating platelet-monocyte complexes in persons infected with human immunodeficiency virus type-1. J Virol Methods 2012; 181 (02) 170-176
- 104 Singh MV, Davidson DC, Jackson JW. et al. Characterization of platelet-monocyte complexes in HIV-1-infected individuals: possible role in HIV-associated neuroinflammation. J Immunol 2014; 192 (10) 4674-4684
- 105 Sui Z, Sniderhan LF, Schifitto G. et al. Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation: implications in HIV type 1 dementia. J Immunol 2007; 178 (05) 3226-3236
- 106 Hottz ED, Bozza FA, Bozza PT. Platelets in immune response to virus and immunopathology of viral infections. Front Med (Lausanne) 2018; 5: 121
- 107 Bhat SA, Goel R, Shukla R, Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension. Brain Behav Immun 2017; 59: 173-189
- 108 Bierling P, Bettaieb A, Oksenhendler E. Human immunodeficiency virus-related immune thrombocytopenia. Semin Thromb Hemost 1995; 21 (01) 68-75
- 109 Scaradavou A. HIV-related thrombocytopenia. Blood Rev 2002; 16 (01) 73-76
- 110 Bettaieb A, Fromont P, Louache F. et al. Presence of cross-reactive antibody between human immunodeficiency virus (HIV) and platelet glycoproteins in HIV-related immune thrombocytopenic purpura. Blood 1992; 80 (01) 162-169
- 111 Bettaieb A, Oksenhendler E, Fromont P, Duedari N, Bierling P. Immunochemical analysis of platelet autoantibodies in HIV-related thrombocytopenic purpura: a study of 68 patients. Br J Haematol 1989; 73 (02) 241-247
- 112 Li T, Yang Y, Li Y. et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J Clin Invest 2022; 132 (04) e150101
- 113 Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019—results from a systematic review and meta-analysis. Crit Care 2020; 24 (01) 239
- 114 Yoseph BP, Klingensmith NJ, Liang Z. et al. Mechanisms of intestinal barrier dysfunction in sepsis. Shock 2016; 46 (01) 52-59
- 115 Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the intestinal mucosa during sepsis. Front Immunol 2019; 10: 891
- 116 Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 2011; 17 (02) 153-159
- 117 Lam C, Tyml K, Martin C, Sibbald W. Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 1994; 94 (05) 2077-2083
- 118 Sigurdsson GH, Christenson JT, el-Rakshy MB, Sadek S. Intestinal platelet trapping after traumatic and septic shock. An early sign of sepsis and multiorgan failure in critically ill patients?. Crit Care Med 1992; 20 (04) 458-467
- 119 Cheng B, Du M, He S. et al. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28 (01) 137
- 120 Inwald DP, Faust SN, Lister P. et al. Platelet and soluble CD40L in meningococcal sepsis. Intensive Care Med 2006; 32 (09) 1432-1437
- 121 Liang Y, Zhu C, Sun Y. et al. Persistently higher serum sCD40L levels are associated with outcome in septic patients. BMC Anesthesiol 2021; 21 (01) 26
- 122 Savidge TC, Newman P, Pothoulakis C. et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 2007; 132 (04) 1344-1358
- 123 Vergnolle N, Cirillo C. Neurons and glia in the enteric nervous system and epithelial barrier function. Physiology (Bethesda) 2018; 33 (04) 269-280
- 124 Michels M, Danieslki LG, Vieira A. et al. CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Mol Med 2015; 21 (01) 219-226
- 125 Valet C, Magnen M, Qiu L. et al. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J Clin Invest 2022; 132 (07) e153920
- 126 Koupenova M, Vitseva O, MacKay CR. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014; 124 (05) 791-802
- 127 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (02) 123-134
- 128 Li N. Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer 2016; 138 (09) 2078-2087
- 129 Li S, Lu Z, Wu S. et al. The dynamic role of platelets in cancer progression and their therapeutic implications. . Nat Rev Cancer 2023
- 130 Malehmir M, Pfister D, Gallage S. et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med 2019; 25 (04) 641-655
- 131 Kasuya A, Tokura Y, Honda T. CD40L from platelet, endothelial cell, and smooth muscle cell may contribute to the proliferation of tumor cell in intravascular large B cell lymphoma. J Dermatol 2021; 48 (04) e180-e181
- 132 Gruss HJ, Herrmann F, Gattei V, Gloghini A, Pinto A, Carbone A. CD40/CD40 ligand interactions in normal, reactive and malignant lympho-hematopoietic tissues. Leuk Lymphoma 1997; 24 (5-6): 393-422
- 133 Ma C, Fu Q, Diggs LP. et al. Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. Cancer Cell 2022; 40 (09) 986-998.e5
- 134 Kiefel V. Reactions induced by platelet transfusions. Transfus Med Hemother 2008; 35 (05) 354-358
- 135 Kaufman J, Spinelli SL, Schultz E, Blumberg N, Phipps RP. Release of biologically active CD154 during collection and storage of platelet concentrates prepared for transfusion. J Thromb Haemost 2007; 5 (04) 788-796
- 136 de Rie MA, van der Plas-van Dalen CM, Engelfriet CP, von dem Borne AE. The serology of febrile transfusion reactions. Vox Sang 1985; 49 (02) 126-134
- 137 Kiefel V, König C, Kroll H, Santoso S. Platelet alloantibodies in transfused patients. Transfusion 2001; 41 (06) 766-770
- 138 Sandler SG, Mallory D, Malamut D, Eckrich R. IgA anaphylactic transfusion reactions. Transfus Med Rev 1995; 9 (01) 1-8
- 139 Hamzeh-Cognasse H, Damien P, Nguyen KA. et al. Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions. Transfusion 2014; 54 (03) 613-625
- 140 Cognasse F, Boussoulade F, Chavarin P. et al. Release of potential immunomodulatory factors during platelet storage. Transfusion 2006; 46 (07) 1184-1189
- 141 Nguyen KA, Hamzeh-Cognasse H, Sebban M. et al. A computerized prediction model of hazardous inflammatory platelet transfusion outcomes. PLoS One 2014; 9 (05) e97082
- 142 Yasui K, Matsuyama N, Kuroishi A, Tani Y, Furuta RA, Hirayama F. Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects. Transfusion 2016; 56 (05) 1201-1212
- 143 Yang L, Yang D, Yang Q, Cheng F, Huang Y. Extracellular DNA in blood products and its potential effects on transfusion. Biosci Rep 2020; 40 (03) BSR20192770
- 144 Cognasse F, Sut C, Hamzeh-Cognasse H, Garraud O. Platelet-derived HMGB1: critical mediator of SARs related to transfusion. Ann Transl Med 2020; 8 (04) 140
- 145 Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 2023; 34 (01) 2242708
- 146 Spakova T, Janockova J, Rosocha J. Characterization and therapeutic use of extracellular vesicles derived from platelets. Int J Mol Sci 2021; 22 (18) 9701
- 147 Sahler J, Spinelli S, Phipps R, Blumberg N. CD40 ligand (CD154) involvement in platelet transfusion reactions. Transfus Clin Biol 2012; 19 (03) 98-103
- 148 Cognasse F, Laradi S, Berthelot P. et al. Platelet inflammatory response to stress. Front Immunol 2019; 10: 1478
- 149 Cognasse F, Hally K, Fauteux-Daniel S. et al. Effects and side effects of platelet transfusion. Hamostaseologie 2021; 41 (02) 128-135
- 150 Aloui C, Prigent A, Tariket S. et al. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2. Sci Rep 2016; 6: 24715
- 151 Cognasse F, Payrat JM, Corash L, Osselaer JC, Garraud O. Platelet components associated with acute transfusion reactions: the role of platelet-derived soluble CD40 ligand. Blood 2008; 112 (12) 4779-4780 , author reply 4780–4781
- 152 Tuinman PR, Gerards MC, Jongsma G, Vlaar AP, Boon L, Juffermans NP. Lack of evidence of CD40 ligand involvement in transfusion-related acute lung injury. Clin Exp Immunol 2011; 165 (02) 278-284
- 153 Hashimoto N, Kawabe T, Imaizumi K. et al. CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury. Am J Respir Cell Mol Biol 2004; 30 (06) 808-815
- 154 Adawi A, Zhang Y, Baggs R, Finkelstein J, Phipps RP. Disruption of the CD40-CD40 ligand system prevents an oxygen-induced respiratory distress syndrome. Am J Pathol 1998; 152 (03) 651-657
- 155 Adawi A, Zhang Y, Baggs R. et al. Blockade of CD40-CD40 ligand interactions protects against radiation-induced pulmonary inflammation and fibrosis. Clin Immunol Immunopathol 1998; 89 (03) 222-230
- 156 Khan SY, Kelher MR, Heal JM. et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood 2006; 108 (07) 2455-2462
- 157 Tariket S, Hamzeh-Cognasse H, Laradi S. et al. Evidence of CD40L/CD40 pathway involvement in experimental transfusion-related acute lung injury. Sci Rep 2019; 9 (01) 12536
- 158 Cognasse F, Tariket S, Hamzeh-Cognasse H. et al. Platelet depletion limits the severity but does not prevent the occurrence of experimental transfusion-related acute lung injury. Transfusion 2020; 60 (04) 713-723
- 159 Bensinger W, Maziarz RT, Jagannath S. et al. A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br J Haematol 2012; 159 (01) 58-66
- 160 Luqman M, Klabunde S, Lin K. et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 2008; 112 (03) 711-720
- 161 Teoh G, Tai YT, Urashima M. et al. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 2000; 95 (03) 1039-1046
- 162 Espié P, He Y, Koo P. et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant 2020; 20 (02) 463-473
- 163 Watanabe M, Yamashita K, Suzuki T. et al. ASKP1240, a fully human anti-CD40 monoclonal antibody, prolongs pancreatic islet allograft survival in nonhuman primates. Am J Transplant 2013; 13 (08) 1976-1988
- 164 Oura T, Yamashita K, Suzuki T. et al. Long-term hepatic allograft acceptance based on CD40 blockade by ASKP1240 in nonhuman primates. Am J Transplant 2012; 12 (07) 1740-1754
- 165 Aoyagi T, Yamashita K, Suzuki T. et al. A human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in cynomolgus monkeys: induction and maintenance therapy. Am J Transplant 2009; 9 (08) 1732-1741
- 166 Perper SJ, Westmoreland SV, Karman J. et al. Treatment with a CD40 antagonist antibody reverses severe proteinuria and loss of saliva production and restores glomerular morphology in murine systemic lupus erythematosus. J Immunol 2019; 203 (01) 58-75
- 167 Anil Kumar MS, Papp K, Tainaka R. et al. Randomized, controlled study of bleselumab (ASKP1240) pharmacokinetics and safety in patients with moderate-to-severe plaque psoriasis. Biopharm Drug Dispos 2018; 39 (05) 245-255
- 168 Kasran A, Boon L, Wortel CH. et al. Safety and tolerability of antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn's disease. Aliment Pharmacol Ther 2005; 22 (02) 111-122
- 169 Patel VL, Schwartz J, Bussel JB. The effect of anti-CD40 ligand in immune thrombocytopenic purpura. Br J Haematol 2008; 141 (04) 545-548
- 170 Sonpavde G, McMannis JD, Bai Y. et al. Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunol Immunother 2017; 66 (10) 1345-1357
- 171 Wilgenhof S, Van Nuffel AMT, Corthals J. et al. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 2011; 34 (05) 448-456