Semin Musculoskelet Radiol 2025; 29(01): 060-075
DOI: 10.1055/s-0044-1791836
Review Article

Patellofemoral Instability: Preoperative Considerations and Postoperative Imaging

1   Department of Medical Imaging, Temerty Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
,
David Wasserstein
2   Division of Orthopedic Surgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
,
Manpreet Singh Sidhu
2   Division of Orthopedic Surgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
,
Sebastian Tomescu
2   Division of Orthopedic Surgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
,
Linda Probyn
1   Department of Medical Imaging, Temerty Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
› Institutsangaben

Abstract

Patellofemoral instability is common, often affecting young female patients. It contributes to significant morbidity, such as pain and premature osteoarthritis. Patient presentation varies, from acute instability events to chronic/recurrent instability. This article provides a detailed description of the anatomy and biomechanics of the patellofemoral joint and relates it to the pathology of patellofemoral instability. There are well-recognized predisposing anatomical factors, such as trochlear morphology, patella height, excessive lateralization of the tibial tubercle, excessive valgus alignment, and femoral or tibial torsion.

Diagnosis of patellofemoral instability requires a thorough clinical history and physical examination, combined with a multimodality imaging approach. Imaging is useful in surgical planning to define the severity of predisposing anatomical factors and to detect postoperative complications. The operative management of patellofemoral instability targets predisposing anatomical factors, such as medial stabilizing ligament reconstruction or repair, tibial tubercle osteotomy, femoral trochleoplasty, coronal plane realignment osteotomy, and torsional osteotomy.

Supplementary Material



Publikationsverlauf

Artikel online veröffentlicht:
11. Februar 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fithian DC, Paxton EW, Stone ML. et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 2004; 32 (05) 1114-1121
  • 2 Fithian DC, Paxton EW, Cohen AB. Indications in the treatment of patellar instability. J Knee Surg 2004; 17 (01) 47-56
  • 3 Hinton RY, Sharma KM. Acute and recurrent patellar instability in the young athlete. Orthop Clin North Am 2003; 34 (03) 385-396
  • 4 Mehta VM, Inoue M, Nomura E, Fithian DC. An algorithm guiding the evaluation and treatment of acute primary patellar dislocations. Sports Med Arthrosc Rev 2007; 15 (02) 78-81
  • 5 Nomura E, Inoue M. Second-look arthroscopy of cartilage changes of the patellofemoral joint, especially the patella, following acute and recurrent patellar dislocation. Osteoarthritis Cartilage 2005; 13 (11) 1029-1036
  • 6 Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res 2007; 455 (455) 93-101
  • 7 Huntington LS, Webster KE, Devitt BM, Scanlon JP, Feller JA. Factors associated with an increased risk of recurrence after a first-time patellar dislocation: a systematic review and meta-analysis. Am J Sports Med 2020; 48 (10) 2552-2562
  • 8 Friedman MV, Hillen TJ, Misra S, Hildebolt CF, Rubin DA. Quantitative variable assessment of patellar instability: an MRI-based study. AJR Am J Roentgenol 2020; 215 (05) 1163-1170
  • 9 Watts RE, Gorbachova T, Fritz RC. et al. Patellar tracking: an old problem with new insights. Radiographics 2023; 43 (06) e220177
  • 10 Atkin DM, Fithian DC, Marangi KS, Stone ML, Dobson BE, Mendelsohn C. Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am J Sports Med 2000; 28 (04) 472-479
  • 11 Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 2010; 30 (04) 961-981
  • 12 Loudon JK. Biomechanics and pathomechanics of the patellofemoral joint. Int J Sports Phys Ther 2016; 11 (06) 820-830
  • 13 Heegaard J, Leyvraz PF, Van Kampen A, Rakotomanana L, Rubin PJ, Blankevoort L. Influence of soft structures on patellar three-dimensional tracking. Clin Orthop Relat Res 1994; (299) 235-243
  • 14 Warren LF, Marshall JL. The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am 1979; 61 (01) 56-62
  • 15 Tanaka MJ, Chahla J, Farr II J. et al. Recognition of evolving medial patellofemoral anatomy provides insight for reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27 (08) 2537-2550
  • 16 Zandee van Rilland ED, Payne SR, Gorbachova T, Shea KG, Sherman SL, Boutin RD. MRI of patellar stabilizers: anatomic visibility, inter-reader reliability, and intra-reader reproducibility of primary and secondary ligament anatomy. Skeletal Radiol 2024; 53 (03) 555-566
  • 17 Dirim B, Haghighi P, Trudell D, Portes G, Resnick D. Medial patellofemoral ligament: cadaveric investigation of anatomy with MRI, MR arthrography, and histologic correlation. AJR Am J Roentgenol 2008; 191 (02) 490-498
  • 18 Raoulis V, Fyllos A, Klontzas ME. et al. Surgical and radiological anatomy of the medial patellofemoral ligament: a magnetic resonance imaging and cadaveric study. Diagnostics (Basel) 2021; 11 (11) 2076
  • 19 Chen J, Xiong Y, Han K. et al. Computed tomography imaging analysis of the MPFL femoral footprint morphology and the saddle sulcus: evaluation of 1094 knees. Orthop J Sports Med 2022; 10 (02) 23 259671211073608
  • 20 Tuxøe JI, Teir M, Winge S, Nielsen PL. The medial patellofemoral ligament: a dissection study. Knee Surg Sports Traumatol Arthrosc 2002; 10 (03) 138-140
  • 21 Ferrua P, Kruckeberg BM, Pasqualotto S, Berruto M, Randelli P, Arendt EA. Proximal medial patellar restraints and their surgical reconstruction. J Orthop Traumatol 2019; 20 (01) 17
  • 22 Baldwin JL. The anatomy of the medial patellofemoral ligament. Am J Sports Med 2009; 37 (12) 2355-2361
  • 23 Collins MS, Tiegs-Heiden CA, Frick MA, Brandt MD. Medial patellofemoral ligament MRI abnormalities in the setting of MCL injuries: are they clinically relevant?. Skeletal Radiol 2022; 51 (07) 1381-1389
  • 24 Christian DR, Redondo ML, Cancienne JM. et al. Differential contributions of the quadriceps and patellar attachments of the proximal medial patellar restraints to resisting lateral patellar translation. Arthroscopy 2020; 36 (06) 1670-1676
  • 25 Hinckel BB, Lipinski L, Arendt EA. Concepts of the distal medial patellar restraints: medial patellotibial ligament and medial patellomeniscal ligament. Sports Med Arthrosc Rev 2019; 27 (04) 143-149
  • 26 Felli L, Alessio-Mazzola M, Lovisolo S, Capello AG, Formica M, Maffulli N. Anatomy and biomechanics of the medial patellotibial ligament: a systematic review. Surgeon 2021; 19 (05) e168-e174
  • 27 Philippot R, Boyer B, Testa R, Farizon F, Moyen B. The role of the medial ligamentous structures on patellar tracking during knee flexion. Knee Surg Sports Traumatol Arthrosc 2012; 20 (02) 331-336
  • 28 Huddleston HP, Chahla J, Gursoy S. et al. A comprehensive description of the lateral patellofemoral complex: anatomy and anisometry. Am J Sports Med 2022; 50 (04) 984-993
  • 29 Dandu N, Trasolini NA, DeFroda SF, Darwish RY, Yanke AB. The lateral side: when and how to release, lengthen, and reconstruct. Clin Sports Med 2022; 41 (01) 171-183
  • 30 Liu JN, Steinhaus ME, Kalbian IL. et al. Patellar instability management: a survey of the International Patellofemoral Study Group. Am J Sports Med 2018; 46 (13) 3299-3306
  • 31 Feller JA, Amis AA, Andrish JT, Arendt EA, Erasmus PJ, Powers CM. Surgical biomechanics of the patellofemoral joint. Arthroscopy 2007; 23 (05) 542-553
  • 32 Dewan V, Webb MSL, Prakash D, Malik A, Gella S, Kipps C. When does the patella dislocate? A systematic review of biomechanical & kinematic studies. J Orthop 2019; 20: 70-77
  • 33 Xu C, Cui Z, Yan L, Chen Z, Wang F. Anatomical components associated with increased tibial tuberosity-trochlear groove distance. Orthop J Sports Med 2022; 10 (08) 23 259671221113841
  • 34 Dejour DH, Mesnard G, Giovannetti de Sanctis E. Updated treatment guidelines for patellar instability: “un menu à la carte.”. J Exp Orthop 2021; 8 (01) 109
  • 35 Ahmad CS, McCarthy M, Gomez JA, Shubin Stein BE. The moving patellar apprehension test for lateral patellar instability. Am J Sports Med 2009; 37 (04) 791-796
  • 36 Abelleyra Lastoria DA, Kenny B, Dardak S, Brookes C, Hing CB. Is the patella apprehension test a valid diagnostic test for patellar instability? A systematic review. J Orthop 2023; 42: 54-62
  • 37 Best MJ, Tanaka MJ, Demehri S, Cosgarea AJ. Accuracy and reliability of the visual assessment of patellar tracking. Am J Sports Med 2020; 48 (02) 370-375
  • 38 Dietrich TJ, Fucentese SF, Pfirrmann CWA. Imaging of individual anatomical risk factors for patellar instability. Semin Musculoskelet Radiol 2016; 20 (01) 65-73
  • 39 Bailey MEA, Metcalfe A, Hing CB, Eldridge J. BASK Patellofemoral Working Group. Consensus guidelines for management of patellofemoral instability. Knee 2021; 29: 305-312
  • 40 Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2 (01) 19-26
  • 41 Lippacher S, Dejour D, Elsharkawi M. et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med 2012; 40 (04) 837-843
  • 42 Nacey NC, Fox MG, Luce BN, Boatman DM, Diduch DR. Assessing femoral trochlear morphologic features on cross-sectional imaging before trochleoplasty: Dejour classification versus quantitative measurement. AJR Am J Roentgenol 2020; 215 (02) 458-464
  • 43 Pineda T, Dejour D. ReSurg. Inconsistent repeatability of the Dejour classification of trochlear dysplasia due to the variability of imaging modalities: a systematic review. Knee Surg Sports Traumatol Arthrosc 2023; 31 (12) 5707-5720
  • 44 Grelsamer RP, Meadows S. The modified Insall-Salvati ratio for assessment of patellar height. Clin Orthop Relat Res 1992; (282) 170-176
  • 45 Picken S, Summers H, Al-Dadah O. Inter- and intra-observer reliability of patellar height measurements in patients with and without patellar instability on plain radiographs and magnetic resonance imaging. Skeletal Radiol 2022; 51 (06) 1201-1214
  • 46 Biedert RM, Tscholl PM. Patella alta: a comprehensive review of current knowledge. Am J Orthop 2017; 46 (06) 290-300
  • 47 Flury A, Hodel S, Hasler J, Hooman E, Fucentese SF, Vlachopoulos L. The winking sign is an indicator for increased femorotibial rotation in patients with recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc 2022; 30 (11) 3651-3658
  • 48 Felus J, Kowalczyk B, Starmach M, Wyrobek L. Osteochondral fractures in acute patellar dislocations in adolescents: midterm results of surgical treatment. Orthop J Sports Med 2022; 10 (07) 23 259671221107608
  • 49 Kluczynski MA, Miranda L, Marzo JM. Prevalence and site of medial patellofemoral ligament injuries in patients with acute lateral patellar dislocations: a systematic review and meta-analysis. Orthop J Sports Med 2020; 8 (12) 23 25967120967338
  • 50 Kim JH, Lee SK. Superolateral Hoffa fat pad edema and patellofemoral maltracking: systematic review and meta-analysis. AJR Am J Roentgenol 2020; 215 (03) 545-558
  • 51 Munch JL, Sullivan JP, Nguyen JT. et al. Patellar articular overlap on MRI is a simple alternative to conventional measurements of patellar height. Orthop J Sports Med 2016; 4 (07) 23 25967116656328
  • 52 Camp CL, Stuart MJ, Krych AJ. et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med 2013; 41 (08) 1835-1840
  • 53 Dong C, Zhao C, Li M. et al. Accuracy of tibial tuberosity-trochlear groove distance and tibial tuberosity-posterior cruciate ligament distance in terms of the severity of trochlear dysplasia. J Orthop Surg Res 2021; 16 (01) 383
  • 54 Zhang L, Tian M, Wu S. et al. Tibial tubercle-trochlear groove distance has better diagnostic reliability than tubercle-posterior cruciate ligament distance for predicting patellar instability: a systematic review. Orthop Surg 2023; 15 (09) 2225-2234
  • 55 Sugano N, Noble PC, Kamaric E. A comparison of alternative methods of measuring femoral anteversion. J Comput Assist Tomogr 1998; 22 (04) 610-614
  • 56 Weiner DS, Cook AJ, Hoyt Jr WA, Oravec CE. Computed tomography in the measurement of femoral anteversion. Orthopedics 1978; 1 (04) 299-306
  • 57 Jarrett DY, Oliveira AM, Zou KH, Snyder BD, Kleinman PK. Axial oblique CT to assess femoral anteversion. AJR Am J Roentgenol 2010; 194 (05) 1230-1233
  • 58 Waidelich HA, Strecker W, Schneider E. Computed tomographic torsion-angle and length measurement of the lower extremity. The methods, normal values and radiation load [in German]. Rofo 1992; 157 (03) 245-251
  • 59 Bulgheroni E, Vasso M, Losco M. et al. Management of the first patellar dislocation: a narrative review. Joints 2019; 7 (03) 107-114
  • 60 Hiemstra LA, Kerslake S, Lafave M. Assessment of demographic and pathoanatomic risk factors in recurrent patellofemoral instability. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3849-3855
  • 61 Dahm F, Syed H, Tomescu S. et al. Biomechanical comparison of 3 medial patellofemoral complex reconstruction techniques shows medial overconstraint but no significant difference in patella lateralization and contact pressure. Arthroscopy 2023; 39 (03) 662-669
  • 62 Emre TY, Cetin H, Selcuk H. et al. Comparison of five different fluoroscopic methods for identifying the MPFL femoral footprint. Arch Orthop Trauma Surg 2024; 144 (04) 1675-1684
  • 63 Grimm NL, Lazarides AL, Amendola A. Tibial tubercle osteotomies: a review of a treatment for recurrent patellar instability. Curr Rev Musculoskelet Med 2018; 11 (02) 266-271
  • 64 Rosso F, Rossi R, Cottino U, Bonasia DE. Tibial tubercle osteotomy for patellofemoral malalignment and chondral disease provided good outcomes: a systematic review. J ISAKOS 2022; 7 (02) 78-86
  • 65 Swarup I, Elattar O, Rozbruch SR. Patellar instability treated with distal femoral osteotomy. Knee 2017; 24 (03) 608-614
  • 66 Migliorini F, Maffulli N, Eschweiler J, Quack V, Tingart M, Driessen A. Lateral retinacular release combined with MPFL reconstruction for patellofemoral instability: a systematic review. Arch Orthop Trauma Surg 2021; 141 (02) 283-292
  • 67 Gallagher BW, Mistretta KL, Abbasi P, Levine RG. Effect of lateral retinacular release on medial patellofemoral ligament reconstruction. Orthop J Sports Med 2022; 10 (02) 23 259671221076877
  • 68 Kerzner B, Hevesi M, Fortier LM. et al. Lateral patellofemoral ligament reconstruction with semitendinosus allograft in the setting of previous lateral release. Arthrosc Tech 2022; 11 (06) e1097-e1103
  • 69 Nolan III JE, Schottel PC, Endres NK. Trochleoplasty: indications and technique. Curr Rev Musculoskelet Med 2018; 11 (02) 231-240
  • 70 Giovannetti de Sanctis E, Guarino A, Pineda T, Demey G, Dejour DH. The femoral sulcus deepening trochleoplasty of Lyon. Arthrosc Tech 2023; 12 (05) e687-e695
  • 71 Cho KJ, Müller JH, Erasmus PJ, DeJour D, Scheffer C. Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea. Acta Bioeng Biomech 2014; 16 (02) 75-84
  • 72 Wong TT, Denning J, Moy MP. et al. MRI following medial patellofemoral ligament reconstruction: assessment of imaging features found with post-operative pain, arthritis, and graft failure. Skeletal Radiol 2021; 50 (05) 981-991
  • 73 Jackson GR, Tuthill T, Gopinatth V. et al. Complication rates after medial patellofemoral ligament reconstruction range from 0% to 32% with 0% to 11% recurrent instability: a systematic review. Arthroscopy 2023; 39 (05) 1345-1356
  • 74 Zhang Z, Cao Y, Song G, Li Y, Zheng T, Zhang H. Derotational femoral osteotomy for treating recurrent patellar dislocation in the presence of increased femoral anteversion: a systematic review. Orthop J Sports Med 2021; 9 (11) 23 259671211057126
  • 75 Liska F, Voss A, Imhoff FB, Willinger L, Imhoff AB. Nonunion and delayed union in lateral open wedge distal femoral osteotomies—a legitimate concern?. Int Orthop 2018; 42 (01) 9-15
  • 76 Forkel P, Achtnich A, Metzlaff S, Zantop T, Petersen W. Midterm results following medial closed wedge distal femoral osteotomy stabilized with a locking internal fixation device. Knee Surg Sports Traumatol Arthrosc 2015; 23 (07) 2061-2067
  • 77 Franulic N, Muñoz JT, Figueroa F, Innocenti P, Gaggero N. Lateral hinge fracture in medial opening wedge high tibial osteotomy: a narrative review. EFORT Open Rev 2023; 8 (07) 572-580
  • 78 Winkler PW, Rupp MC, Lutz PM. et al. A hinge position distal to the adductor tubercle minimizes the risk of hinge fractures in lateral open wedge distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3382-3391
  • 79 Takeuchi R, Ishikawa H, Kumagai K. et al. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy 2012; 28 (01) 85-94
  • 80 Leclerc JT, Dartus J, Labreuche J. et al. Complications and outcomes of trochleoplasty for patellofemoral instability: a systematic review and meta-analysis of 1000 trochleoplasties. Orthop Traumatol Surg Res 2021; 107 (07) 103035
  • 81 Arendt EA, Berruto M, Filardo G. et al. Early osteoarthritis of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 2016; 24 (06) 1836-1844
  • 82 Christoforakis J, Bull AMJ, Strachan RK, Shymkiw R, Senavongse W, Amis AA. Effects of lateral retinacular release on the lateral stability of the patella. Knee Surg Sports Traumatol Arthrosc 2006; 14 (03) 273-277