Subscribe to RSS
DOI: 10.1055/s-0044-1795097
The Role of Platelets in Atherosclerosis: A Historical Review

Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet–leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Keywords
atherosclerosis - endothelial dysfunction - inflammation - matrix metalloproteinases - plateletsPublication History
Article published online:
19 November 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Chaudhary PK, Kim S, Kim S. An insight into recent advances on platelet function in health and disease. Int J Mol Sci 2022; 23 (11) 6022
- 2 Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999; 340 (02) 115-126
- 3 Massberg S, Brand K, Grüner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
- 4 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9 (01) 61-67
- 5 Virchow R. Cellular Pathology. London, United Kingdom:: John Churchill;; 1858
- 6 Rokitansky K, Day EG, Moore HC, Sieveking EH, Swaine EW. A Manual of Pathological Anatomy. Philadelphia, PA:: Blanchard & Lea;; 1855: 201-205
- 7 Anitschkow ND. Uber die veranderungen der kaninchenaorta bei experimenteller cholesterinsteatase. Beitr Pathol Anat 1913; 56: 379-404
- 8 Gordon DJ, Rifkind BM. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: a new class of cholesterol-lowering agents. Ann Intern Med 1987; 107 (05) 759-761
- 9 Khvorova A. Oligonucleotide therapeutics—a new class of cholesterol-lowering drugs. N Engl J Med 2017; 376 (01) 4-7
- 10 Paciullo F, Momi S, Gresele P. PCSK9 in Haemostasis and Thrombosis: possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention. Thromb Haemost 2019; 119 (03) 359-367
- 11 Gordon Betts J, Young KA, Wise JA. et al. Anatomy and Physiology. 2nd ed. Huston, TX:: OpenStax; 2022
- 12 Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 2008; 1778 (03) 794-809
- 13 Lin P, Ji HH, Li YJ, Guo SD. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci 2021; 8: 679797
- 14 Khallou-Laschet J, Varthaman A, Fornasa G. et al. Macrophage plasticity in experimental atherosclerosis. PLoS One 2010; 5 (01) e8852
- 15 Kadl A, Meher AK, Sharma PR. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010; 107 (06) 737-746
- 16 Momi S, Falcinelli E, Petito E, Ciarrocca Taranta G, Ossoli A, Gresele P. Matrix metalloproteinase-2 on activated platelets triggers endothelial PAR-1 initiating atherosclerosis. Eur Heart J 2022; 43 (06) 504-514
- 17 Duewell P, Kono H, Rayner KJ. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464 (7293) 1357-1361
- 18 De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21 (05) 312-325
- 19 Bäck M, Yurdagul Jr A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2019; 16 (07) 389-406
- 20 Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res 2021; 117 (13) 2525-2536
- 21 Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114 (12) 1852-1866
- 22 Marfella R, Prattichizzo F, Sardu C. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N Engl J Med 2024; 390 (10) 900-910
- 23 Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular disease in myeloproliferative neoplasms: JACC: CardioOncology state-of-the-art review. JACC Cardiooncol 2022; 4 (02) 166-182
- 24 Kattoor AJ, Kanuri SH, Mehta JL. Role of ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 2019; 26 (09) 1693-1700
- 25 Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011; 12 (03) 204-212
- 26 Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of atherosclerosis: a complex net of interactions. Int J Mol Sci 2019; 20 (21) 5293
- 27 Riksen NP. Trained immunity and atherosclerotic cardiovascular disease. Curr Opin Lipidol 2019; 30 (05) 395-400
- 28 Zhong C, Yang X, Feng Y, Yu J. Trained immunity: an underlying driver of inflammatory atherosclerosis. Front Immunol 2020; 11: 284
- 29 Stolarz AJ, Mu S, Zhang H, Fouda AY, Rusch NJ, Ding Z. Opinion: endothelial cells - macrophage-like gatekeepers?. Front Immunol 2022; 13: 902945
- 30 Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells–conditional innate immune cells. J Hematol Oncol 2013; 6: 61
- 31 Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16 (12) 727-744
- 32 Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 2003; 100 (23) 13531-13536
- 33 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
- 34 Houlihan RB, Copley AL. The adhesion of rabbit platelets to bacteria. J Bacteriol 1946; 52 (04) 439-448
- 35 Gaertner F, Ahmad Z, Rosenberger G. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017; 171 (06) 1368-1382.e23
- 36 Nicolai L, Pekayvaz K, Massberg S. Platelets: orchestrators of immunity in host defense and beyond. Immunity 2024; 57 (05) 957-972
- 37 Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J Thromb Haemost 2018; 16 (06) 1187-1197
- 38 Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70 (12) 6524-6533
- 39 Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1984; 4 (04) 341-356
- 40 Zhao B, Dierichs R, Liu B, Holling-Rauss M. Functional morphological alterations of human blood platelets induced by oxidized low density lipoprotein. Thromb Res 1994; 74 (03) 293-301
- 41 Shiraki R, Inoue N, Kawasaki S. et al. Expression of Toll-like receptors on human platelets. Thromb Res 2004; 113 (06) 379-385
- 42 Panigrahi S, Ma Y, Hong L. et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 2013; 112 (01) 103-112
- 43 Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461
- 44 Banerjee M, Huang Y, Joshi S. et al. Platelets endocytose viral particles and are activated via TLR (Toll-like receptor) signaling. Arterioscler Thromb Vasc Biol 2020; 40 (07) 1635-1650
- 45 Shi G, Morrell CN. Platelets as initiators and mediators of inflammation at the vessel wall. Thromb Res 2011; 127 (05) 387-390
- 46 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
- 47 Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood 2010; 115 (17) 3632-3639
- 48 Lindemann S, Tolley ND, Dixon DA. et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001; 154 (03) 485-490
- 49 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106 (12) 1523-1529
- 50 Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 2003; 10 (3–4): 335-350
- 51 Henn V, Slupsky JR, Gräfe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667) 591-594
- 52 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
- 53 Stemerman MB, Ross R. Experimental arteriosclerosis. I. Fibrous plaque formation in primates, an electron microscope study. J Exp Med 1972; 136 (04) 769-789
- 54 Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 1980; 36 (02) 261-268
- 55 Buja LM, Kita T, Goldstein JL, Watanabe Y, Brown MS. Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arteriosclerosis 1983; 3 (01) 87-101
- 56 Aliev G, Burnstock G. Watanabe rabbits with heritable hypercholesterolaemia: a model of atherosclerosis. Histol Histopathol 1998; 13 (03) 797-817
- 57 Guyard-Dangremont V, Desrumaux C, Gambert P, Lallemant C, Lagrost L. Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. Relation to atherogenesis susceptibility. Comp Biochem Physiol PartB Biochem Mol Biol 1998; 120 (03) 517-525
- 58 Vesselinovitch D, Wissler RW, Doull J. Experimental production of atherosclerosis in mice. 1. Effect of various synthetic diets and radiation on survival time, food consumption and body weight in mice. J Atheroscler Res 1968; 8 (03) 483-495
- 59 Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985; 57 (01) 65-73
- 60 Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993; 92 (02) 883-893
- 61 Lichtman AH, Clinton SK, Iiyama K, Connelly PW, Libby P, Cybulsky MI. Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol 1999; 19 (08) 1938-1944
- 62 Oppi S, Lüscher TF, Stein S. Mouse models of atherosclerosis research – which is my life?. Front Cardiovasc Med 2019; 6: 46
- 63 Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258 (5081) 468-471
- 64 Plump AS, Smith JD, Hayek T. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992; 71 (02) 343-353
- 65 Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994; 14 (01) 133-140
- 66 Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 2000; 20 (12) 2587-2592
- 67 Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal models of atherosclerosis-supportive notes and tricks of the trade. Circ Res 2022; 130 (12) 1869-1887
- 68 Ilyas I, Little PJ, Liu Z. et al. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci 2022; 43 (11) 920-939
- 69 Przyborowski K, Kassassir H, Wojewoda M. et al. Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR-/- mice. Platelets 2017; 28 (07) 657-667
- 70 Ozawa K, Packwood W, Muller MA. et al. Removal of endothelial surface-associated von villebrand factor suppresses accelerate datherosclerosis after myocardial infarction. J Transl Med 2024; 22 (01) 412
- 71 Fuller M, Dadoo O, Serkis V. et al. The effects of diet on occlusive coronary artery atherosclerosis and myocardial infarction in scavenger receptor class B, type 1/low-density lipoprotein receptor double knockout mice. Arterioscler Thromb Vasc Biol 2014; 34 (11) 2394-2403
- 72 van Vlijmen BJM, van den Maagdenberg AMJM, Gijbels MJJ. et al. Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 1994; 93 (04) 1403-1410
- 73 Hofker MH, van Vlijmen BJ, Havekes LM. Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis. Atherosclerosis 1998; 137 (01) 1-11
- 74 Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995; 57: 791-804
- 75 Libby P. Murine “model” monotheism: an iconoclast at the altar of mouse. Circ Res 2015; 117 (11) 921-925
- 76 Badimon L, Vilahur G. Platelets, arterial thrombosis and cerebral ischemia. Cerebrovasc Dis 2007; 24 (1, Suppl 1): 30-39
- 77 Kaplan ZS, Jackson SP. The role of platelets in atherothrombosis. Hematology (Am Soc Hematol Educ Program) 2011; 2011: 51-61
- 78 Theilmeier G, Michiels C, Spaepen E. et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 2002; 99 (12) 4486-4493
- 79 Hamilos M, Petousis S, Parthenakis F. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovasc Diagn Ther 2018; 8 (05) 568-580
- 80 Davì G, Gresele P, Violi F. et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 1997; 96 (01) 69-75
- 81 Gresele P, Momi S, Migliacci R. Endothelium, venous thromboembolism and ischaemic cardiovascular events. Thromb Haemost 2010; 103 (01) 56-61
- 82 Lusis AJ. Atherosclerosis. Nature 2000; 407 (6801) 233-241
- 83 Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987; 2 (8567) 1057-1058
- 84 de Graaf JC, Banga JD, Moncada S, Palmer RM, de Groot PG, Sixma JJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation 1992; 85 (06) 2284-2290
- 85 Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991; 88 (11) 4651-4655
- 86 Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 1995; 76 (06) 980-986
- 87 Radomski MW, Palmer RM, Moncada S. Characterization of the L-arginine:nitric oxide pathway in human platelets. Br J Pharmacol 1990; 101 (02) 325-328
- 88 Queen LR, Xu B, Horinouchi K, Fisher I, Ferro A. beta(2)-adrenoceptors activate nitric oxide synthase in human platelets. Circ Res 2000; 87 (01) 39-44
- 89 Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res 2007; 101 (07) 654-662
- 90 Cozzi MR, Guglielmini G, Battiston M. et al. Visualization of nitric oxide production by individual platelets during adhesion in flowing blood. Blood 2015; 125 (04) 697-705
- 91 Goubareva I, Gkaliagkousi E, Shah A, Queen L, Ritter J, Ferro A. Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte-platelet aggregates. Cardiovasc Res 2007; 75 (04) 793-802
- 92 da Costa Martins P, van den Berk N, Ulfman LH, Koenderman L, Hordijk PL, Zwaginga JJ. Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation. Arterioscler Thromb Vasc Biol 2004; 24 (01) 193-199
- 93 Pircher J, Engelmann B, Massberg S, Schulz C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb Haemost 2019; 119 (08) 1274-1282
- 94 da Costa Martins P, García-Vallejo JJ, van Thienen JV. et al. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol 2007; 27 (05) 1023-1029
- 95 Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 1997; 100 (08) 2085-2093
- 96 Santoso S, Sachs UJ, Kroll H. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196 (05) 679-691
- 97 Wang Y, Sakuma M, Chen Z. et al. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation 2005; 112 (19) 2993-3000
- 98 Zhao Z, Vajen T, Karshovska E. et al. Deletion of junctional adhesion molecule A from platelets increases early-stage neointima formation after wire injury in hyperlipidemic mice. J Cell Mol Med 2017; 21 (08) 1523-1531
- 99 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
- 100 Daub K, Langer H, Seizer P. et al. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J 2006; 20 (14) 2559-2561
- 101 Franck G, Mawson TL, Folco EJ. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123 (01) 33-42
- 102 Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245) 316-320
- 103 Mostafa MN, Osama M. The implications of neutrophil extracellular traps in the pathophysiology of atherosclerosis and atherothrombosis. Exp Biol Med (Maywood) 2020; 245 (15) 1376-1384
- 104 Pitchford SC, Momi S, Baglioni S. et al. Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit Care Med 2008; 177 (06) 604-612
- 105 Zuchtriegel G, Uhl B, Puhr-Westerheide D. et al. Platelets guide leukocytes to their sites of extravasation. PLoS Biol 2016; 14 (05) e1002459
- 106 Kraemer BF, Borst O, Gehring EM. et al. PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). J Mol Med (Berl) 2010; 88 (12) 1277-1288
- 107 Witte A, Rohlfing AK, Dannenmann B. et al. The chemokine CXCL14 mediates platelet function and migration via direct interaction with CXCR4. Cardiovasc Res 2021; 117 (03) 903-917
- 108 Petito E, Amison RT, Piselli E. et al. A dichotomy in platelet activation: evidence of different functional platelet responses to inflammatory versus haemostatic stimuli. Thromb Res 2018; 172: 110-118
- 109 Huilcaman R, Veliz-Olivos N, Venturini W. et al. Endothelial transmigration of platelets depends on soluble factors released by activated endothelial cells and monocytes. Platelets 2021; 32 (08) 1113-1119
- 110 Gonzalez J, Donoso W, Díaz N. et al. High fat diet induces adhesion of platelets to endothelium in two models of dyslipidemia. J Obes 2014; 2014: 591270
- 111 Chèvre R, González-Granado JM, Megens RT. et al. High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ Res 2014; 114 (05) 770-779
- 112 Posma JJN, Posthuma JJ, Spronk HMH. Coagulation and non-coagulation effects of thrombin. J Thromb Haemost 2016; 14 (10) 1908-1916
- 113 Boudreau LH, Duchez AC, Cloutier N. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124 (14) 2173-2183
- 114 Grichine A, Jacob S, Eckly A. et al. The fate of mitochondria during platelet activation. Blood Adv 2023; 7 (20) 6290-6302
- 115 Lutgens E, Gorelik L, Daemen MJ. et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med 1999; 5 (11) 1313-1316
- 116 Schönbeck U, Sukhova GK, Shimizu K, Mach F, Libby P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A 2000; 97 (13) 7458-7463
- 117 Gerdes N, Seijkens T, Lievens D. et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arterioscler Thromb Vasc Biol 2016; 36 (03) 482-490
- 118 Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394 (6689) 200-203
- 119 Giannini S, Falcinelli E, Bury L. et al. Interaction with damaged vessel wall in vivo in humans induces platelets to express CD40L resulting in endothelial activation with no effect of aspirin intake. Am J Physiol Heart Circ Physiol 2011; 300 (06) H2072-H2079
- 120 Fateh-Moghadam S, Li Z, Ersel S. et al. Platelet degranulation is associated with progression of intima-media thickness of the common carotid artery in patients with diabetes mellitus type 2. Arterioscler Thromb Vasc Biol 2005; 25 (06) 1299-1303
- 121 Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007; 17 (08) 253-258
- 122 Falcinelli E, Guglielmini G, Torti M, Gresele P. Intraplatelet signaling mechanisms of the priming effect of matrix metalloproteinase-2 on platelet aggregation. J Thromb Haemost 2005; 3 (11) 2526-2535
- 123 Falcinelli E, Giannini S, Boschetti E, Gresele P. Platelets release active matrix metalloproteinase-2 in vivo in humans at a site of vascular injury: lack of inhibition by aspirin. Br J Haematol 2007; 138 (02) 221-230
- 124 Momi S, Falcinelli E, Giannini S. et al. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. J Exp Med 2009; 206 (11) 2365-2379
- 125 Mastenbroek TG, Feijge MAH, Kremers RMW. et al. Platelet-associated matrix metalloproteinases regulate thrombus formation and exert local collagenolytic activity. Arterioscler Thromb Vasc Biol 2015; 35 (12) 2554-2561
- 126 Sebastiano M, Momi S, Falcinelli E, Bury L, Hoylaerts MF, Gresele P. A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood 2017; 129 (07) 883-895
- 127 Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 2003; 101 (07) 2661-2666
- 128 Subramaniam M, Saffaripour S, Watson SR, Mayadas TN, Hynes RO, Wagner DD. Reduced recruitment of inflammatory cells in a contact hypersensitivity response in P-selectin-deficient mice. J Exp Med 1995; 181 (06) 2277-2282
- 129 Koyama H, Maeno T, Fukumoto S. et al. Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation 2003; 108 (05) 524-529
- 130 Willeit P, Tschiderer L, Allara E. et al; PROG-IMT and the Proof-ATHERO Study Groups. Carotid inima-media thickness progression as surrogate marker for cardiovascukar risk: meta-analysis of 119 clinical trials involving 100667 patients. Circulation 2020; 142 (07) 621-642
- 131 Gresele P, Migliacci R, Paciullo F. Measurement of arterial stiffness in antiphospholipid syndrome: a step forward in cardiovascular risk stratification?. Rheumatology (Oxford) 2024; 63 (04) 912-913
- 132 Sachais BS, Kuo A, Nassar T. et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002; 99 (10) 3613-3622
- 133 Domschke G, Gleissner CA. CXCL4-induced macrophages in human atherosclerosis. Cytokine 2019; 122: 154141
- 134 Pitsilos S, Hunt J, Mohler ER. et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost 2003; 90 (06) 1112-1120
- 135 Kaczor DM, Kramann R, Hackeng TM, Schurgers LJ, Koenen RR. Differential effects of platelet factor 4 (CXCL4) and its non-allelic variant (CXCL4L1) on cultured human vascular smooth muscle cells. Int J Mol Sci 2022; 23 (02) 580
- 136 Sachais BS, Turrentine T, Dawicki McKenna JM, Rux AH, Rader D, Kowalska MA. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007; 98 (05) 1108-1113
- 137 Belton OA, Duffy A, Toomey S, Fitzgerald DJ. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 2003; 108 (24) 3017-3023
- 138 Cyrus T, Sung S, Zhao L, Funk CD, Tang S, Praticò D. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2002; 106 (10) 1282-1287
- 139 Tang SY, Lordan R, Meng H. et al. Differential impact in vivo of Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated depletion of cyclooxygenase-1 in platelets in mice. Arterioscler Thromb Vasc Biol 2024; 44 (06) 1393-1406
- 140 Li D, Wang Y, Zhang L. et al. Roles of purinergic receptor P2Y, G protein-coupled 12 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32 (08) e81-e89
- 141 West LE, Steiner T, Judge HM, Francis SE, Storey RF. Vessel wall, not platelet, P2Y12 potentiates early atherogenesis. Cardiovasc Res 2014; 102 (03) 429-435
- 142 Heim C, Gebhardt J, Ramsperger-Gleixner M, Jacobi J, Weyand M, Ensminger SM. Clopidogrel significantly lowers the development of atherosclerosis in ApoE-deficient mice in vivo. Heart Vessels 2016; 31 (05) 783-794
- 143 Afek A, Kogan E, Maysel-Auslender S. et al. Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice. Microvasc Res 2009; 77 (03) 364-369
- 144 Takeda M, Yamashita T, Shinohara M. et al. Beneficial effect of anti-platelet therapies on atherosclerotic lesion formation assessed by phase-contrast X-ray CT imaging. Int J Cardiovasc Imaging 2012; 28 (05) 1181-1191
- 145 Momi S, Pitchford SC, Alberti PF, Minuz P, Del Soldato P, Gresele P. Nitroaspirin plus clopidogrel versus aspirin plus clopidogrel against platelet thromboembolism and intimal thickening in mice. Thromb Haemost 2005; 93 (03) 535-543
- 146 Schirmer SH, Kratz MT, Kazakov A. et al. Inhibition of the adenosine diphosphate receptor P2Y12 reduces atherosclerotic plaque size in hypercholesterolemic ApoE−/− mice. Eur Heart J 2012; 33 (suppl_ (Suppl. 01) 19-338
- 147 Nylander S, Schulz R. Effects of P2Y12 receptor antagonists beyond platelet inhibition–comparison of ticagrelor with thienopyridines. Br J Pharmacol 2016; 173 (07) 1163-1178
- 148 Friebel J, Moritz E, Witkowski M. et al. Pleiotropic effects of the protease-activated receptor 1 (PAR1) inhibitor, vorapaxar, on atherosclerosis and vascular inflammation. Cells 2021; 10 (12) 3517
- 149 Hiatt WR. Vascular disease: vorapaxar prevents progression of peripheral artery disease. Nat Rev Cardiol 2013; 10 (07) 367-368
- 150 Gresele P, Momi S, Guglielmini G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem Pharmacol 2019; 166: 300-312
- 151 Gresele P, Momi S. Pharmacologic profile and therapeutic potential of NCX 4016, a nitric oxide-releasing aspirin, for cardiovascular disorders. Cardiovasc Drug Rev 2006; 24 (02) 148-168
- 152 Napoli C, Aldini G, Wallace JL. et al. Efficacy and age-related effects of nitric oxide-releasing aspirin on experimental restenosis. Proc Natl Acad Sci U S A 2002; 99 (03) 1689-1694
- 153 Gresele P, Migliacci R, Arosio E, Bonizzoni E, Minuz P, Violi F. NCX 4016-X-208 Study Group. Effect on walking distance and atherosclerosis progression of a nitric oxide-donating agent in intermittent claudication. J Vasc Surg 2012; 56 (06) 1622-1628 , 1628.e1–1628.e5
- 154 Tschiderer L, Seekircher L, Izzo R. et al; Proof-ATHERO Study Group. Association of intima-media thickness measured at the common carotid artery with incident carotid plaque: individual participant data meta-analysis of 20 prospective studies. J Am Heart Assoc 2023; 12 (12) e027657
- 155 Momi S, Monopoli A, Alberti PF. et al. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovasc Res 2012; 94 (03) 428-438
- 156 Momi S, Guglielmini G, Ciarrocca Taranta G, Giglio E, Monopoli A, Gresele P. A nitric oxide-donor pravastatin hybrid drug exerts antiplatelet and antiatherogenic activity in mice. Bleeding Thromb Vasc Biol 2022; 1 (02) 1-19
- 157 Ungerer M, Li Z, Baumgartner C. et al. The GPVI-Fc fusion protein Revacept reduces thrombus formation and improves vascular dysfunction in atherosclerosis without any impact on bleeding times. PLoS One 2013; 8 (08) e71193
- 158 Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004; 104 (06) 1606-1615
- 159 Massberg S, Schürzinger K, Lorenz M. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112 (08) 1180-1188
- 160 Nakajima A, Araki M, Kurihara O, Lee H, Nakamura S, Jang IK. Potent platelet inhibition with peri-procedural tirofiban may attenuate progression of atherosclerosis in patients with acute coronary syndromes. J Thromb Thrombolysis 2022; 53 (02) 241-248