Subscribe to RSS
DOI: 10.1055/s-0045-1802351
Current Techniques in the Imaging of Gout

Abstract
Gout is a common inflammatory arthritis with well-described imaging characteristics. Radiography depicts erosive change and in advanced cases, tophus deposition near joints and in association with tendons or bursae. Computed tomography demonstrates the same features but may also use dual-energy or photon-counting techniques that allow for tissue composition analysis and the specific identification of monosodium urate deposition. Magnetic resonance imaging (MRI) is useful in identifying tophi and the damage associated with gout, such as bone erosion and cartilage loss in advanced cases. MRI also helps differentiate gout from other types of inflammatory arthritis, infection, or tumor that may have a similar clinical presentation. Ultrasound is widely used in the diagnosis of gout and also useful in procedural guidance of joint aspiration or soft tissue biopsy.
Publication History
Article published online:
31 March 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 2015; 11 (11) 649-662
- 2 Jeong YJ, Park S, Yon DK. et al. Global burden of gout in 1990–2019: a systematic analysis of the Global Burden of Disease study 2019. Eur J Clin Invest 2023; 53 (04) e13937
- 3 Rai SK, Burns LC, De Vera MA, Haji A, Giustini D, Choi HK. The economic burden of gout: a systematic review. Semin Arthritis Rheum 2015; 45 (01) 75-80
- 4 Desai J, Steiger S, Anders HJ. Molecular pathophysiology of gout. Trends Mol Med 2017; 23 (08) 756-768
- 5 Desai MA, Peterson JJ, Garner HW, Kransdorf MJ. Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics 2011; 31 (05) 1365-1375 ; discussion 1376–1377
- 6 Taljanovic MS, Melville DM, Gimber LH. et al. High-resolution US of rheumatologic diseases. Radiographics 2015; 35 (07) 2026-2048
- 7 Neogi T, Jansen TL, Dalbeth N. et al. 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2015; 74 (10) 1789-1798
- 8 Rettenbacher T, Ennemoser S, Weirich H. et al. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray. Eur Radiol 2008; 18 (03) 621-630
- 9 Perez-Ruiz F, Dalbeth N, Urresola A, de Miguel E, Schlesinger N. Imaging of gout: findings and utility. Arthritis Res Ther 2009; 11 (03) 232
- 10 Choi MH, MacKenzie JD, Dalinka MK. Imaging features of crystal-induced arthropathy. Rheum Dis Clin North Am 2006; 32 (02) 427-446 , viii
- 11 Peh WC. Tophaceous gout. Am J Orthop 2001; 30 (08) 665
- 12 Kester C, Wallace MT, Jelinek J, Aboulafia A. Gouty involvement of the patella and extensor mechanism of the knee mimicking aggressive neoplasm. A case series. Skeletal Radiol 2018; 47 (06) 865-869
- 13 Huber FA, Becce F, Gkoumas S. et al. Differentiation of crystals associated with arthropathies by spectral photon-counting radiography: a proof-of-concept study. Invest Radiol 2021; 56 (03) 147-152
- 14 Buckens CF, Terra MP, Maas M. Computed tomography and MR imaging in crystalline-induced arthropathies. Radiol Clin North Am 2017; 55 (05) 1023-1034
- 15 Ahmad Z, Gupta AK, Sharma R, Bhalla AS, Kumar U, Sreenivas V. Dual energy computed tomography: a novel technique for diagnosis of gout. Int J Rheum Dis 2016; 19 (09) 887-896
- 16 Glazebrook KN, Guimarães LS, Murthy NS. et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology 2011; 261 (02) 516-524
- 17 Swan A, Amer H, Dieppe P. The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis 2002; 61 (06) 493-498
- 18 Sotniczuk M, Nowakowska-Płaza A, Wroński J, Wisłowska M, Sudoł-Szopińska I. The clinical utility of dual-energy computed tomography in the diagnosis of gout—a cross-sectional study. J Clin Med 2022; 11 (17) 5249
- 19 Bongartz T, Glazebrook KN, Kavros SJ. et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 2015; 74 (06) 1072-1077
- 20 Glazebrook KN, Kakar S, Ida CM, Laurini JA, Moder KG, Leng S. False-negative dual-energy computed tomography in a patient with acute gout. J Clin Rheumatol 2012; 18 (03) 138-141
- 21 Jia E, Zhu J, Huang W, Chen X, Li J. Dual-energy computed tomography has limited diagnostic sensitivity for short-term gout. Clin Rheumatol 2018; 37 (03) 773-777
- 22 Dalbeth N, House ME, Aati O. et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis 2015; 74 (05) 908-911
- 23 Dalbeth N, Billington K, Doyle A. et al. Effects of allopurinol dose escalation on bone erosion and urate volume in gout: a dual-energy computed tomography imaging study within a randomized, controlled trial. Arthritis Rheumatol 2019; 71 (10) 1739-1746
- 24 Choi HK, Al-Arfaj AM, Eftekhari A. et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 2009; 68 (10) 1609-1612
- 25 Kotlyarov M, Hermann KGA, Mews J, Hamm B, Diekhoff T. Development and validation of a quantitative method for estimation of the urate burden in patients with gouty arthritis using dual-energy computed tomography. Eur Radiol 2020; 30 (01) 404-412
- 26 Døssing A, Müller FC, Becce F, Stamp L, Bliddal H, Boesen M. Dual-energy computed tomography for detection and characterization of monosodium urate, calcium pyrophosphate, and hydroxyapatite: a phantom study on diagnostic performance. Invest Radiol 2021; 56 (07) 417-424
- 27 Melzer R, Pauli C, Treumann T, Krauss B. Gout tophus detection-a comparison of dual-energy CT (DECT) and histology. Semin Arthritis Rheum 2014; 43 (05) 662-665
- 28 Ahn SJ, Zhang D, Levine BD. et al. Limitations of dual-energy CT in the detection of monosodium urate deposition in dense liquid tophi and calcified tophi. Skeletal Radiol 2021; 50 (08) 1667-1675
- 29 Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology 2016; 281 (03) 690-707
- 30 Mallinson PI, Coupal T, Reisinger C. et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. AJR Am J Roentgenol 2014; 203 (01) W103-W109
- 31 Lohan DG, Motamedi K, Chow K. et al. Does dual-energy CT of lower-extremity tendons incur penalties in patient radiation exposure or reduced multiplanar reconstruction image quality?. AJR Am J Roentgenol 2008; 191 (05) 1386-1390
- 32 Parakh A, Macri F, Sahani D. Dual-energy computed tomography: dose reduction, series reduction, and contrast load reduction in dual-energy computed tomography. Radiol Clin North Am 2018; 56 (04) 601-624
- 33 Jeon JY, Lee SW, Jeong YM, Baek HJ. The effect of tube voltage combination on image artefact and radiation dose in dual-source dual-energy CT: comparison between conventional 80/140 kV and 80/150 kV plus tin filter for gout protocol. Eur Radiol 2019; 29 (03) 1248-1257
- 34 Baffour FI, Glazebrook KN, Ferrero A. et al. Photon-counting detector CT for musculoskeletal imaging: a clinical perspective. AJR Am J Roentgenol 2023; 220 (04) 551-560
- 35 Stamp LK, Anderson NG, Becce F. et al. Clinical utility of multi-energy spectral photon-counting computed tomography in crystal arthritis. Arthritis Rheumatol 2019; 71 (07) 1158-1162
- 36 Mourad C, Gallego Manzano L, Viry A. et al. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53 (09) 1889-1902
- 37 Carter JD, Kedar RP, Anderson SR. et al. An analysis of MRI and ultrasound imaging in patients with gout who have normal plain radiographs. Rheumatology (Oxford) 2009; 48 (11) 1442-1446
- 38 Popovich I, Dalbeth N, Doyle A, Reeves Q, McQueen FM. Exploring cartilage damage in gout using 3-T MRI: distribution and associations with joint inflammation and tophus deposition. Skeletal Radiol 2014; 43 (07) 917-924
- 39 Yu JS, Chung C, Recht M, Dailiana T, Jurdi R. MR imaging of tophaceous gout. AJR Am J Roentgenol 1997; 168 (02) 523-527
- 40 McQueen FM, Doyle A, Reeves Q. et al. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study. Rheumatology (Oxford) 2014; 53 (01) 95-103
- 41 Grainger R, Dalbeth N, Keen H. et al. Imaging as an outcome measure in gout studies: report from the OMERACT Gout Working Group. J Rheumatol 2015; 42 (12) 2460-2464
- 42 Lambert RGW, Østergaard M, Jaremko JL. Magnetic resonance imaging in rheumatology. Magn Reson Imaging Clin N Am 2018; 26 (04) 599-613
- 43 Klauser AS, Peetrons P. Developments in musculoskeletal ultrasound and clinical applications. Skeletal Radiol 2010; 39 (11) 1061-1071
- 44 Grassi W, Okano T, Filippucci E. Use of ultrasound for diagnosis and monitoring of outcomes in crystal arthropathies. Curr Opin Rheumatol 2015; 27 (02) 147-155
- 45 Wakefield RJ, Balint PV, Szkudlarek M. et al; OMERACT 7 Special Interest Group. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol 2005; 32 (12) 2485-2487
- 46 Filippucci E, Riveros MG, Georgescu D, Salaffi F, Grassi W. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study. Osteoarthritis Cartilage 2009; 17 (02) 178-181
- 47 Wright SA, Filippucci E, McVeigh C. et al. High-resolution ultrasonography of the first metatarsal phalangeal joint in gout: a controlled study. Ann Rheum Dis 2007; 66 (07) 859-864
- 48 Terslev L, Gutierrez M, Christensen R. et al; OMERACT US Gout Task Force. Assessing elementary lesions in gout by ultrasound: Results of an OMERACT patient-based agreement and reliability exercise. J Rheumatol 2015; 42 (11) 2149-2154
- 49 Cazenave T, Martire V, Reginato AM. et al; Pan-American League of Associations for Rheumatology (PANLAR) Ultrasound Study Group. Reliability of OMERACT ultrasound elementary lesions in gout: results from a multicenter exercise. Rheumatol Int 2019; 39 (04) 707-713
- 50 Lee YH, Song GG. Diagnostic accuracy of ultrasound in patients with gout: a meta-analysis. Semin Arthritis Rheum 2018; 47 (05) 703-709
- 51 Thiele RG. Role of ultrasound and other advanced imaging in the diagnosis and management of gout. Curr Rheumatol Rep 2011; 13 (02) 146-153
- 52 Christiansen SN, Østergaard M, Slot O, Fana V, Terslev L. Retrospective longitudinal assessment of ultrasound gout lesions using the OMERACT semi-quantitative scoring system. Rheumatology (Oxford) 2022; 61 (12) 4711-4721
- 53 Klauser A, Frauscher F, Schirmer M. et al. The value of contrast-enhanced color Doppler ultrasound in the detection of vascularization of finger joints in patients with rheumatoid arthritis. Arthritis Rheum 2002; 46 (03) 647-653
- 54 Klauser A, Demharter J, De Marchi A. et al; IACUS study group. Contrast enhanced gray-scale sonography in assessment of joint vascularity in rheumatoid arthritis: results from the IACUS study group. Eur Radiol 2005; 15 (12) 2404-2410
- 55 AIUM Practice Parameter for the Performance of Contrast-Enhanced Ultrasound. AIUM Practice Parameter for the Performance of Contrast-Enhanced Ultrasound. J Ultrasound Med 2024; 43 (03) E8-E19
- 56 Chen SY, Wang YW, Chen WS, Hsiao MY. Update of contrast-enhanced ultrasound in musculoskeletal medicine: clinical perspectives—a review. J Med Ultrasound 2023; 31 (02) 92-100
- 57 Tang Y, Yan F, Yang Y. et al. Value of shear wave elastography in the diagnosis of gouty and non-gouty arthritis. Ultrasound Med Biol 2017; 43 (05) 884-892
- 58 Wang Q, Guo LH, Li XL. et al. Differentiating the acute phase of gout from the intercritical phase with ultrasound and quantitative shear wave elastography. Eur Radiol 2018; 28 (12) 5316-5327
- 59 Drazyk A, Loh H, Bui C, Ding P, Mansberg R. False-positive metastatic bone disease on FDG PET/CT due to multilevel tophaceous gout of the spine. Clin Nucl Med 2024; 49 (03) 240-241
- 60 Chowalloor PV, Siew TK, Keen HI. Imaging in gout: a review of the recent developments. Ther Adv Musculoskelet Dis 2014; 6 (04) 131-143