Int J Sports Med 1999; 20(7): 470-475
DOI: 10.1055/s-1999-8828
Training and Testing
Georg Thieme Verlag Stuttgart ·New York

Alterations in Pulmonary Function Following Exercise are not Caused by the Work of Breathing Alone

 J. R. Coast,  H. C. Haverkamp,  C. M. Finkbone,  K. L. Anderson,  S. O. George,  R. A. Herb
  • S. A. Rasmussen Exercise Physiology Laboratory, Northern Arizona University, Flagstaff, USA
Further Information

Publication History

Publication Date:
31 December 1999 (online)

Both pulmonary function and respiratory muscle strength decrease following exercise in healthy humans. The alterations in respiratory muscle are not the same following exercise and voluntary isocapnic hyperpnea that simulates that exercise. Therefore, in this study we measured pulmonary and respiratory muscle function following maximal exercise or hyperpnea that simulated the ventilation seen during exercise. Forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1.0), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) and handgrip strength were measured before and following voluntary hyperpnea in which minute ventilation and breathing frequency were controlled to levels identical to those obtained during the exercise test, and before and following a period of rest of equal duration to the exercise and hyperpnea tests. FVC decreased by 400 ml (7 %, p < 0.05) immediately post-exercise. MIP decreased by 12 mmHg (15 %, p < 0.005) following exercise and remained depressed for 15 minutes. Neither MEP nor FEV1.0 decreased following exercise, and none of the variables were altered following the control or hyperpnea bouts. These data indicate that pulmonary function and respiratory muscle strength are altered following exercise but not by similar bouts of hyperpnea without accompanying exercise. Therefore, exercise affects pulmonary function independent of the respiratory muscle work done.

References

  • 1 Babcock M A, Pegelow D F, McClaran S R, Suman O E, Dempsey J A. Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue.  J Appl Physiol. 1995;  78 1710-9
  • 2 Black L F, Hyatt R E. Maximal respiratory pressures: normal values and relationship to age and sex.  Am Rev Respir Dis. 1969;  99 696-702
  • 3 Braunwald W, Bullock F A, Kelly E R. The effects of exercise on central blood volume in man.  J Clin Invest. 1960;  39 413-9
  • 4 Buono M J. Effect of central vascular engorgement and immersion on various lung volumes.  J Appl Physiol. 1983;  54 1094-6
  • 5 Buono M J, Constable S H, Morton A R, Rotkis T C, Stanforth P R, Wilmore J H. The effect of an acute bout of exercise on selected pulmonary function measurements.  Med Sci Sports Exerc. 1981;  13 290-3
  • 6 Choukroun M L, Kays C, Gioux M, Techoueyres P, Guenard H. Respiratory muscle function in trained and untrained adolescents during short-term high intensity exercise.  Eur J Appl Physiol. 1993;  67 14-9
  • 7 Coast J R, Clifford P S, Henrich T W, Stray-Gundersen J, Johnson R L. Maximal inspiratory pressure following maximal exercise in trained and untrained subjects.  Med Sci Sports Exerc. 1990;  22 811-5
  • 8 Coast J R, O'Kroy J A, Akers F M, Dahl T. Effects of lower body pressure changes on pulmonary function.  Med Sci Sports Exerc. 1998;  30 1035-40
  • 9 Coast J R, Rasmussen S A, Krause K M, O'Kroy J A, Loy R A, Rhodes J. Ventilatory work and oxygen consumption during exercise and hyperventilation.  J Appl Physiol. 1993;  74 793-8
  • 10 Coast J R, Shanely R A, Lawler J M, Herb R A. Lactic acidosis and diaphragmatic function in vitro.  Am J Respir Crit Care Med. 1995;  152 1648-52
  • 11 Coast J R, Weise S D. Lung volume changes and maximal inspiratory pressure.  J Cardiopulm Rehabil. 1990;  10 461-4
  • 12 Cordain L, Rhode E J, Gotshall R W, Tucker A. Residual lung volume and ventilatory muscle strength changes following maximal and submaximal exercise.  Int J Sports Med. 1994;  15 158-61
  • 13 Dikshit M B, Patrick J M. Vital capacity and airflow measured from partial flow-volume curves during 5 degree head-down tilt.  Aviat Space Envir Med. 1987;  58 343-6
  • 14 Farrell P A, Maron M B, Hamilton L H, Maksud M G, Foster C. Time course of lung volume changes during prolonged treadmill exercise.  Med Sci Sports Exerc. 1983;  15 319-24
  • 15 Flamm S D, Taki J, Moore R, Lewis S F, Keech R, Maltais F, Ahmad M, Dragotakes S, Alpert N, Strauss H W. Redistribution of regional and organ blood volume and effect on cardiac function in relation to upright exercise intensity in healthy human subjects.  Circulation. 1990;  81 1550-9
  • 16 Fregosi R F, Dempsey J A. Effects of exercise in normoxia and acute hypoxia on respiratory muscle metabolites.  J Appl Physiol. 1986;  60 1274-83
  • 17 Green H J, Ball-Burnett M E, Morrissey M A, Kile J, Abraham G C. Glycogen utilization in rat respiratory muscles during intense running.  Can J Physiol Pharmacol. 1988;  66 917-23
  • 18 Green H J, Ball-Burnett M E, Morrissey M A, Spalding M J, Hughson R L, Fraser I G. Fiber type specific glycogen utilization in rat diaphragm during treadmill exercise.  J Appl Physiol. 1987;  63 75-83
  • 19 Harms C A, Babcock M A, McClaran S R, Pegelow D F, Nickele G A, Melson W B, Dempsey J A. Respiratory muscle work compromises leg blood flow during maximal exercise.  J Appl Physiol. 1997;  82 1573-83
  • 20 Hill N S, Jacoby C, Farber H W. Effect of an endurance triathlon on pulmonary function.  Med Sci Sports Exerc. 1991;  23 1260-4
  • 21 Ianuzzo C D, Spalding M J, Williams H. Exercise-induced glycogen utilization by the respiratory muscles.  J Appl Physiol. 1987;  62 1405-9
  • 22 Johnson B D, Babcock M A, Suman O E, Dempsey J A. Exercise-induced diaphragmatic fatigue in healthy humans.  J Physiol. 1993;  460 385-405
  • 23 Lefcoe N M, Carter R P, Ahmad D. Postexercise bronchoconstriction in normal subjects and asthmatics.  Am Rev Respir Dis. 1971;  104 562-7
  • 24 Loke J, Mahler D A, Virgulto J A. Respiratory muscle fatigue after marathon running.  J Appl Physiol. 1982;  52 821-4
  • 25 Mainwood G W, Renaud J M. The effect of acid-base balance on fatigue of skeletal muscle.  Can J Physiol Pharmacol. 1985;  63 403-16
  • 26 Manohar M, Goetz T E, Holste L C, Nganwa D. Diaphragmatic O2 and lactate extraction during submaximal and maximal exertion in ponies.  J Appl Physiol. 1988;  64 1203-9
  • 27 Manohar M, Hassan A S. Diaphragm does not produce ammonia or lactate during high-intensity short-term exercise.  Am J Physiol. 1990;  259 9
  • 28 Manohar M, Hassan A S. Diaphragmatic energetics during prolonged exhaustive exercise.  Am Rev Respir Dis. 1991;  144 415-8
  • 29 Maron M B, Hamilton L H, Maksud M G. Alterations in pulmonary function consequent to competitive marathon running.  Med Sci Sports. 1979;  11 244-9
  • 30 Marshall B E, Teichner R L, Kallos T, Sugerman H J, Wyche M Q, Tantum K R. Effects of posture and exercise on the pulmonary extravascular water volume in man.  J Appl Physiol. 1971;  31 375-9
  • 31 Miles D S, Durbin R J. Alterations in pulmonary function consequent to a 5-mile run.  J Sport Med Phys Fit. 1985;  25 90-7
  • 32 O'Kroy J A, Loy R A, Coast J R. Pulmonary function changes following exercise.  Med Sci Sports Exerc. 1992;  24 1359-64
  • 33 Robertson C H, Foster G H, Johnson R L. The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance.  J Clin Invest. 1977;  59 31-42
  • 34 Yanos J, Wood L DH, Davis K, Keamy M. The effect of respiratory and lactic acidosis on diaphragm function.  Am Rev Respir Dis. 1993;  147 616-9

Ph.D. J. Richard Coast,

Dept. HPEN Northern Arizona University

Box 15095

Flagstaff, AZ 86011-5095

USA

Phone: +1 (520) 523-8018

Fax: +1 (520) 523-0148

Email: Richard.Coast@nau.edu