Zusammenfassung.
Ziel: Es wurde überprüft, ob makroskopische Veränderungen der Hirn-Tumor-Grenze mit der Entstehung von Hirnödemen bei Meningeomen korrelieren. Methoden: In einer prospektiven Studie wurden präoperativ mit einer optimierten Inversion-Recovery(IR)-Sequenz 27 Meningeome untersucht. Nach i.v. Gabe von 0,2 mmol Gd-DTPA/kg erfolgte eine lückenlose Bildakquisition axial und koronar (SL = 2 mm). Bei der Auswertung wurden an der Hirn-Tumor-Grenze Distanzen von signalveränderter Hirnrinde und von Obliterationen des Subarachnoidalraumes (SAR) gemessen, mit dem Tumorumfang in Beziehung gesetzt und daraus ein Rinden- und SAR-Index berechnet. Intraoperativ wurde die Hirn-Tumor-Grenze von 25 Meningeomen folgendermaßen beurteilt: 0: SAR komplett erhalten, 1: SAR teilweise aufgehoben, 2: Rindenband aufgehoben, 3: Hirninfiltration des Tumors. Ergebnisse: Meningeome mit Ödem zeigten im Vergleich zu jenen ohne Ödem signifikante Erhöhungen (p = 0,0001) des SAR-Index (0,47 vs. 0,07) und des Rindenindex (0,45 vs. 0,0). Intraoperativ zeigten 95% der ödemassoziierten Meningeome eine Obliteration des SAR, ödemfreie Meningeome nur in 50%. Schlußfolgerungen: Peritumorale Adhärenzen der Arachnoidea mit obliteriertem SAR scheinen bei der Ödeminduktion von Meningeomen relevant zu sein.
Purpose: The aim of the study was to verify a possible correlation between macroscopic changes of the brain-tumor interface (BTI) and the development of a peritumoral brain edema in meningiomas. Methods: 27 meningiomas were investigated in this prospective study using an optimized inversion-recovery (IR) sequence. After i.v. administration of 0.2 mmol Gd-DTPA/kg axial and coronary images were acquired (slice thickness = 2 mm). The distances of signal altered cortex and obliterations of the subarachnoid space (SAS) were measured at the BTI and related to the pial tumor circumference (cortical-index and SAS-index). Intraoperatively the BTI was divided into the following categories: 0: SAS not obliterated, 1: SAS partially obliterated, 2: direct contact between tumor and white matter, 3: tumor infiltration into brain. Results: Edema-associated meningiomas showed a significantly (p = 0.0001) increased SAS-index (0.47 vs. 0.07) and cortical index (0.45 vs. 0.0) compared to cases without edema. Intraoperatively 95 % of meningiomas with brain edema showed SAS-obliterations, compared to 50 % of cases without an edema. Conclusions: Arachnoid adhesions at the BTI with obliteration of the SAS seem to play an essential role in the induction of brain edema in meningiomas.
Schlüsselwörter:
Meningeom - Ödem - Hirn-Tumor-Grenze - Arachnoidea - Inversion-Recovery-Sequenz
Key words:
Meningioma - Brain edema - Brain-tumor-interface - Arachnoid - Inversion recovery sequence
Literatur
1
Bradac G B, Ferszt R, Bender A, Schörner W.
Peritumoral edema in meningiomas. A radiological and histological study.
Neuroradiology.
1986;
28
304-312
2
Sigel R M, Messina A V.
Computed tomography: the anatomic basis of the zone of diminished density surrounding meningiomas.
Amer J Roentgenol.
1976;
127
139-141
3
Tatagiba M, Mirzai S, Samii M.
Peritumoral blood flow in intracranial meningiomas.
Neurosurgery.
1991;
28
400-404
4
Hiyama H, Kubo O, Tajika Y, Tohyama T, Takakura K.
Meningiomas associated with peritumoural venous stasis: three types on cerebral angiogram.
Acta Neurochir.
1994;
129
31-38
5
Philippon J, Foncin J F, Grob R, Srour A, Poisson M, Pertuiset B F.
Cerebral edema associated with meningiomas: possible role of a secretory-excretory phenomenon.
Neurosurgery.
1984;
14
295-301
6
Ito U, Tomita H, Tone O, Masaoka H, Tominaga B.
Peritumoral edema in meningioma: a contrast enhanced CT study.
Acta Neurochir (Wien).
1994;
60 (Suppl)
361-364
7
Bitzer M, Wöckel L, Morgalla M, Keller C, Friese S, Heiss E, Meyermann R, Grote E, Voigt K.
Peritumoural brain oedema in intracranial meningiomas: influence of tumour size, location and histology.
Acta Neurochir (Wien).
1997b;
139
1136-1142
8
Salpietro F M, Alafaci C, Lucerna S, Iacopino D, Todaro C, Tomasello F.
Peritumoral edema in meningiomas: microsurgical observations of different brain tumor interfaces related to computed tomography.
Neurosurgery.
1994;
35
638-642
9
Gilbert J J, Paulseth J E, Coates R K, Malott D.
Cerebral edema associated with meningiomas.
Neurosurgery.
1983;
12
599-605
10
Hossmann K A, Wechsler W, Wilmes F.
Experimental peritumorous edema. Morphological and pathophysiological observations.
Acta Neuropathol (Berl).
1979;
45
195-203
11
Go K G, Wilmink J T, Molenaar W M.
Peritumoural edema associated with meningiomas.
Neurosurgery.
1988;
23
175-179
12
Gazendam J, Go K G, van Zanten A K.
Composition of isolated edema fluid in cold-induced edema.
J Neurosurg.
1979;
51
70-77
13
Bitzer M, Topka H, Morgalla M, Friese S, Wöckel L, Voigt K.
Tumor-related venous obstruction and development of peritumoral brain edema in meningiomas.
Neurosurgery.
1998c;
42
730-737
14
Reulen H J, Graham R, Spatz M, Klatzo I.
Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema.
J Neurosurg.
1977;
46
24-35
15
Inamura T, Nishio S, Takeshita I, Fujiwara S, Fukui M.
Peritumoural brain edema in meningiomas: influence of vascular supply on its development.
Neurosurgery.
1992;
31
179-185
16
Bitzer M, Wöckel L, Luft A R, Wakhloo A K, Petersen D, Opitz H, Sievert T, Ernemann U, Voigt K.
The importance of pial blood supply to the development of peritumoral brain edema in meningiomas.
J Neurosurg.
1997a;
87
368-373
17
Ide M, Jimbo M, Kubo O, Yamamoto M, Takeyama E, Imanaga H.
Peritumoral brain edema and cortical damage by meningioma.
Acta Neurochir.
1994;
60
369-372
Dr. med. PD Michael Bitzer
Abteilung Neuroradiologie Radiologische Klinik
Hoppe-Seyler-Straße 3D-72076 Tübingen