RSS-Feed abonnieren
DOI: 10.1055/s-2000-11220
Acute Stress Induced Modifications of Calcium Signaling in Learned Helpless Rats
Publikationsverlauf
03.09.1999
08.02.2000
Publikationsdatum:
31. Dezember 2000 (online)

Previous reports have demonstrated reduced elevations of free intracellular calcium concentration in blood cells of depressed patients after various stimuli. Therefore, a disturbance of intracellular calcium (Ca2+) homeostasis has been postulated to be involved in the pathophysiology of mood disorders. It was the aim of the present study to investigate whether Ca2+ signaling was affected in spleen T-lymphocytes of rats submitted to a learned helplessness paradigm, an animal model of depression with a high level of construct, face and predictive validity. In addition, we tested for effects of acute stress on the Ca2+ signaling in helpless rats, as compared to non-stressed rats. It was found that mitogen-induced Ca2+ signaling only tended to be reduced in helpless rats. However, when helpless rats were submitted to acute immobilization stress, Ca2+ signaling appeared to be significantly blunted, whereas the same stressor did not affect Ca2+ signaling in the non-helpless control rats. These acute stress-induced differences in Ca2+ signaling were not paralleled by a differential increase in plasma corticosterone. It is hypothesized that blunted Ca2+ signaling, as assessed in spleen T-lymphocytes of helpless rats, may be a correlate of the increased vulnerability of helpless rats to acute stressors.
References
- 1 Ackermann K D, Bellinger D L, Felten S Y, Felten D L. Ontogeny and senescence of noradrenergic innervation of the rodent thymus and spleen. In: Ader R, Cohen N, Felten DL (eds.) Psychoneuroimmunology. New York; Academic Press 1991: 71-125
- 2 Aldenhoff J B, Dumais-Huber C, Fritzsche M, Sulger J, Vollmayr B. Altered Ca2+-homeostasis in single T-lymphocytes of depressed patients. J. Psychiatr. Res.. 1997; 31 315-322
- 3 Bering B, Moises H W, Müller W E. Muscarinic cholinergic receptors on intact human lymphocytes. Properties and subclass characterization. Biol. Psychiatry. 1987; 22 1451-1458
- 4 Bohus M, Förstner U, Kiefer C, Gebicke-Harter P, Timmer J, Spraul G, Wark H J, Hecht H, Berger M, van Calker D. Increased sensitivity of the inositol-phospholipid system in neutrophils from patients with acute major depressive episodes. Psychiatry Res.. 1996; 65 45-51
- 5 Carman J S, Wyatt R J. Calcium: Bivalent cation in the bivalent psychoses. Biol. Psychiatry. 1979; 14 295-336
- 6 Cohen S, Herbert T B. Health Psychology: Psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annu. Rev. Psychol.. 1996; 47 113-142
- 7 Dantzer R, Kelley K W. Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sci.. 1989; 44 195-2008
- 8 De Vry J, Glaser T, Schuurman T, Schreiber R, Traber J. 5-HT1A receptors in anxiety. In: Briley M, File SE (eds.) New concepts in anxiety. London; MacMillan Press 1991: 94-129
- 9 De Vry J, Fritze J, Post R M. The management of co-existing depression in patients with dementia: potential of calcium channel antagonists. Clin. Neuropharmacol.. 1997; 20 22-35
- 10 Dubovsky S L, Christiano J, Daniell L C, Murphy J, Adler L, Baker N, Harris A. Increased platelet intracellular calcium concentration in patiens with bipolar affective disorders. Arch. Gen. Psychiatry. 1989; 46 632-638
- 11 Dubovsky S L, Lee C, Christiano J, Murphy J. Elevated platelet intracellular calcium concentration in bipolar depression. Biol. Psychiatry. 1991; 29 441-450
- 12 Dubovsky S L, Murphy J, Thomas M, Rademacher J. Abnormal intracellular calcium ion concentration in platelets and lymphocytes of bipolar patients. Am. J. Psychiatry. 1992; 149 118-120
- 13 Dubovsky S L, Franks R D. Intracellular calcium ions in affective disorders: A review and an hypothesis. Biol. Psychiatry. 1993; 18 781-797
- 14 Eckert A, Gann H, Riemann D, Aldenhoff J, Müller W E. Elevated intracellular calcium levels after 5-HT2 receptor stimulation in platelets of depressed patients. Biol. Psychiatry. 1993; 34 565-568
- 15 Eckert A, Gann H, Riemann D, Aldenhoff J, Müller W E. Platelet and lymphocyte free intracellular calcium in affective disorders. Eur. Arch. Psychiatry Clin. Neurosci.. 1994; 243 218-223
- 16 Eckert A, Förstl H, Zerfass R, Hartmann H, Müller W E. Lymphocytes and neurophils as peripheral models to study the effect of β-amyloid on cellular calcium signaling in Alzheimer's disease. Life Sci.. 1996; 59 499-510
- 18 Emamghoreishi M, Schlichter L, Li P P, Parikh S, Sen J, Kamble A, Warsh J J. High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. Am. J. Psychiatry. 1997; 154 976-982
- 19 Giral P, Martin P, Soubrié P, Simon P. Reversal of helpless behaviour in rats by putative 5-HT1A agonists. Biol. Psychiatry. 1988; 23 237-242
- 20 Grynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.. 1985; 260 3440-3450
- 21 Hartmann H, Eckert A, Förstl H, Müller W E. Similar age-related changes of free intracellular calcium in lymphocytes and central neurons: effects of Alzheimer's disease. Eur. Arch. Psychiatry Clin. Neurosci.. 1994; 243 218-223
- 22 Hartmann H, Velbinger K, Eckert A, Müller W E. Region-specific down-regulation of free intracellular calcium in the aged rat brain. Neurobiol. Aging. 1996; 17 557-563
- 23 Helmeste D M, Tang S W. The role of calcium in the etiology of the affective disorders. Jpn. J. Pharmacol.. 1998; 77 107-116
- 24 Henn F A, Johnson J, Edwards E, Anderson D. Melancholia in rodents: Neurobiology and pharmacology. Psychopharmacol. Bull.. 1985; 21 443-445
- 25 Henn F A, Edwards E, Muneyyirci J. Animal models of depression. Clin. Neurosci.. 1993; 1 152-156
- 26 Hough C, Lu S J, Davis C L, Chuang D M, Post R M. Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay. Biol. Psychiatry. 1999; 46 247-255
- 27 Irwin M, Daniels M, Bloom E T, Smith T L, Weiner H. Life events, depressive symptoms, and immune function. Am. J. Psychiatry. 1987; 144 437-441
- 28 Jesberger J A, Richardson J S. Animal models of depression: parallels and correlates to severe depression in humans. Biol. Psychiatry. 1985; 20 764-784
- 29 Julius M H, Simpson E, Herzensberg L A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur. J. Immunol.. 1973; 3 645-649
- 30 Kiecolt-Glaser J K, Glaser R. Psychoneuroimmunology and health consequences: Data and shared mechanisms. Psychosom. Med.. 1995; 57 267-274
- 31 Kubera M, Skowron-Cendrzak A, Mazur-Kolecka B, Bubak-Satora M, Basta-Kaim A, Laskowska-Bozek H, Ryzewski J. Stress-induced changes in muscarinic and β-adrenergic binding sites on rat thymocytes and lymphocytes. J. Neuroimmunol.. 1992; 37 229-236
- 32 Kusumi I, Koyama T, Yamashita I. Serotonin stimulated Ca2+ response is increased in the blood platelets of depressed patients. Biol. Psychiatry. 1991; 30 310-312
- 33 Kusumi I, Koyama T, Yamashita I. Thrombin-induced platelet calcium mobilization is enhanced in bipolar disorders. Biol. Psychiatry. 1992; 32 731-734
- 34 Kusumi I, Koyama T, Yamashita I. Serotonin-induced platelet intracellular calcium mobilization in depressed patients. Psychopharmacology. 1994; 113 322-327
- 35 Laudenslager M L, Reite M, Harbeck R J. Suppressed immune response in infant monkeys associated with maternal separation. Behav. Neural Biol.. 1982; 36 40-48
- 36 Mikuni M, Kagaya A, Takahashi K, Meltzer H Y. Serotonin but not norepinephrine-induced calcium mobilization of platelets is enhanced in affective disorders. Psychopharmacology. 1992; 106 311-314
- 37 Moynihan J, Brenner G, Koota D, Breneman S, Cohen N, Ader R. Effects of handling on antibody production, mitogen responses, spleen cell number, and lymphocyte subpopulations. Life Sci.. 1990; 46 1937-1944
- 38 Rabin B S, Cohen S, Ganguli R, Lysle D T, Cunnick J E. Bidirectional interaction between the central nervous system and the immune system. Crit. Rev. Immunol.. 1989; 9 279-312
- 39 Reite M, Harbeck R, Hoffmann A. Altered cellular immune response following peer separation. Life Sci.. 1981; 29 1133-1136
- 40 Seligman M EP, Maier S F. Failure to escape traumatic shock. J. Exp. Psychol.. 1967; 74 1-9
- 41 Stein M, Miller A H, Trestman R L. Depression, the immune system, and health and illness. Arch. Gen. Psychiatry. 1991; 48 171-177
- 42 van Calker D, Förstner U, Bohus M, Gebicke-Harter P, Hecht H, Wark H J, Berger M. Increased sensitivity to agonist stimulation of the CA2+ response in neutrophils of manic-depressive patients: effect of lithium therapy. Neuropsychobiology. 1993; 27 180-183
- 43 Vescei P. Glucocorticoids: Cortisol, cortisone, corticosterone, compound S, and their metabolites. In: Jaffe BM, Behrman HR (eds.) Methods of hormone radioimmunoassay. New York, San Francisco, London; Academic Press 1979: 767-796
- 44 Walker L G, Eremin O. Psychoneuroimmunology: A new fad or the fifth cancer treatment modality?. Am. J. Surg.. 1995; 170 2-4
- 45 Willner P. Animal models of depression: An overview. Pharmacol. Ther.. 1990; 45 425-455
- 46 Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci. Biobehav. Rev.. 1992; 16 525-534
Prof. Dr. W. E. Müller
Pharmakologisches Institut Biozentrum der Universität
Marie-Curie-Str. 9
60439 Frankfurt
Germany