Semin Thromb Hemost 2000; 26(5): 589-594
DOI: 10.1055/s-2000-13215
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Hepatic Microvascular Responses to Sepsis

Axel Ring, Wolfgang Stremmel
  • Department of Medicine IV, University of Heidelberg, Heidelberg, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

The liver is believed to play a major role in the initiation of multiorgan failure, the most lethal complication in the clinical course of sepsis. Microbes and their virulence factors enter the hepatic circulation where they first activate sinusoidal endothelial cells and Kupffer cells to produce proinflammatory mediators, including TNF-α, IL-1, IL-6, reactive oxygen metabolites, and eicosanoids. These mediators cause not only microbial killing, but also structural and functional liver damage concerning mainly the parenchymal cells. Leukocytes are targeted to the liver sinusoids by chemoattractants and, like platelets, tether to the sinusoidal endothelial cells, which are in a procoagulant state of inflammatory activation. Clogging of the sinusoids by these cells leads to a decrease of blood flow through the sinusoids, which is further aggravated by endothelin-1 effectuating the constriction of hepatic stellate cells in the sinusoids. In contrast, both nitric oxide (NO) and carbon monoxide (CO) act as antagonists of endothelin-1 by mediating relaxation of sinusoidal vessels. By maintaining an adequate sinusoidal perfusion, both NO and CO are hepatoprotective during the early, hyperdynamic phase of sepsis characterized by an increased cardiac output and moderate peripheral vasodilation. However, during the late, hypodynamic phase of sepsis, massive overproduction of NO by the inducible NO synthase leads to circulatory collapse, which inevitably includes breakdown of the liver circulation.

REFERENCES

  • 1 Bone R C. Gram-positive organisms and sepsis.  Arch Intern Med . 1994;  154 26-34
  • 2 Rackow E C, Astiz M E. Pathophysiology and treatment of septic shock.  JAMA . 1991;  266 548-554
  • 3 Wang P, Chaudry I CH. Mechanism of hepatocellular dysfunction during hyperdynamic sepsis.  Am J Physiol . 1996;  270 R927-R938
  • 4 Pfeiffer R. Untersuchungen über das Choleragift.  Z Hyg . 1892;  11 393-412
  • 5 Morrison D C, Silverstein R, Luchi M, Shnyra A. Structure-function relationships of bacterial endotoxins. Contribution to microbial sepsis.  Infect Dis Clin North Am . 1999;  13 313-340
  • 6 De Kimpe J S, Kengatharan M, Thiemermann C, Vane J R. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure.  Proc Natl Acad Sci USA . 1995;  92 10359-10363
  • 7 Braun J S, Novak R, Gao G, Murray P J, Shenep J L. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages.  Infect Immunol . 1999;  67 3750-3756
  • 8 Suttorp N, Fuhrmann M, Tannert-Otto S, Grimminger F, Bhadki S. Pore-forming bacterial toxins potently induce release of nitric oxide in porcine endothelial cells.  J Exp Med . 1993;  178 337-341
  • 9 Fleischer B. Pyrogenic exotoxins (superantigens) (Staphylococcus aureus and Streptococcus pyogenes). In: Rappuoli R, Montecucco C, eds. Guidebook to Protein Toxins and Their Use in Cell Biology Oxford: Oxford University Press, 1997: 89-91
  • 10 Sparwasser T, Miethke T, Lipford G. Bacterial DNA causes septic shock.  Nature . 1997;  386 336-337
  • 11 Lipford G B, Heeg K, Wagner H. Bacterial DNA as immune cell activator.  Trends Microbiol . 1998;  6 496-500
  • 12 Michie H R, Manogue K R, Spriggs D R. Detection of circulating tumor necrosis factor after endotoxin administration.  N Engl J Med . 1988;  318 1481-1486
  • 13 Damas P, Reuter A, Gysen P. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans.  Crit Care Med . 1989;  17 975-978
  • 14 Tsutsui H, Matsui K, Kawada N. IL-18 accounts for both TNF-alpha- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice.  J Immunol . 1997;  159 3961-3967
  • 15 Tsutsui H, Kayagaki N, Kuida K. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice.  Immunity . 1999;  11 359-367
  • 16 Hack C E, De Groot R E, Felt-Bersma R J. Increased plasma levels of interleukin-6 in sepsis.  Blood . 1989;  74 1704-1710
  • 17 Ohteki T, Okamoto S, Nakamura M, Nemoto E, Kumagai K. Elevated production of interleukin 6 by hepatic MNC correlates with ICAM-1 expression on the hepatic sinusoidal endothelial cells in autoimmune MRL/lpr mice.  Immunol Lett . 1993;  36 145-152
  • 18 Rietschel E T, Mamat U, Ulmer A J. Bakterielle Endotoxine als Auslöser des septischen Schocks: Konstitution, Wirkung und Neutralisation. In: Lode H, Siegenthaler W, eds. Neue Erkenntnisse in der Infektiologie New York: Thieme, 1999: 61-87
  • 19 Ayala A, Knotts J B, Ertel W. Role of interleukin 6 and transforming growth factor-beta in the induction of depressed splenocyte responses following sepsis.  Arch Surg . 1993;  128 89-94
  • 20 Knolle P A, Loser E, Protzer U. Regulation of endotoxin-induced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10.  Clin Exp Immunol . 1997;  107 555-561
  • 21 Kox W J, Bone R C, Krausch D. Interferon gamma-1b in the treatment of compensatory anti-inflammatory response syndrome. A new approach: Proof of principle.  Arch Intern Med . 1997;  157 389-393
  • 22 Bucher M, Ittner K P, Zimmermann M. Nitric oxide synthase isoform III gene expression in rat liver is up-regulated by lipopolysaccharide and lipoteichoic acid.  FEBS Lett . 1997;  412 511-514
  • 23 Wong J M, Billiar T R. Regulation and function of inducible nitric oxide synthase during sepsis and acute inflammation.  Adv Pharmacol . 1995;  34 155-170
  • 24 Hutcheson I R, Whittle B JR, Boughton-Smith N K. Role of nitric oxide in maintaining vascular integrity of endotoxin-induced acute intestinal damage in the rat.  Br J Pharmacol . 1992;  101 815-820
  • 25 Pastor C M, Losser M R, Payen D. Nitric oxide donor prevents hepatic and systemic perfusion decrease induced by endotoxin in anesthetized rabbits.  Hepatology . 1995;  22 1547-1553
  • 26 Losser M R, Payen D. Mechanisms of liver damage.  Semin Liver Dis . 1996;  16 357-367
  • 27 Bauer M, Zhang J X, Bauer I, Clemens M G. ET-1 induced alterations of hepatic microcirculation: Sinusoidal and extrasinusoidal sites of action.  Am J Physiol . 1994;  267 G143-G149
  • 28 McCuskey R S. Responses of the hepatic sinusoid lining and microcirculation to combinations of endotoxin, cytokines and ethanol. In: Wisse E, Knook DL, McCuskey RS, eds. Cells of the Hepatic Sinusoid III Leiden: Kupffer Cell Foundation, 1991: 1-5
  • 29 Spolarics Z. Endotoxin stimulates gene expression of ROS-eliminating pathways in rat hepatic endothelial and Kupffer cells.  Am J Physiol . 1996;  270 G660-G666
  • 30 Meszaros K, Bojta J, Bautista A P, Lang C H, Spitzer J J. Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver.  Am J Physiol . 1991;  260 G7-G12
  • 31 Doi F, Goya T, Torisu M. Potential role of hepatic macrophages in neutrophil-mediated liver injury in rats with sepsis.  Hepatology . 1993;  17 1086-1094
  • 32 McCuskey R S, Nishida J, McDonnell D. Effect of immunoglobulin G on the hepatic microvascular inflammatory response during sepsis.  Shock . 1996;  5 28-33
  • 33 Steinhoff G, Behrend M, Schrader B, Duijvestijn A M, Wonigeit K. Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2, and LFA-3.  Am J Pathol . 1993;  142 481-488
  • 34 Xu H, Gonzalo J A, St Pierre Y. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice.  J Exp Med . 1994;  180 95-109
  • 35 Wang P, Ayala A, Ba Z F. Tumor necrosis factor-α produces hepatocellular dysfunction despite normal cardiac output and hepatic microcirculation.  Am J Physiol . 1993;  265 G126-G132
  • 36 Wang J H, Redmond H P, Watson R WG, Bouchier-Hayes D. Role of lipopolysaccharide and tumor necrosis factor-α in induction of hepatocyte necrosis.  Am J Physiol . 1995;  269 G297-G304
  • 37 Wang P, Ba Z F, Chaudry I H. Mechanism of hepatocellular dysfunction during early sepsis.  Arch Surg . 1997;  132 364-370
  • 38 Wang P, Ba Z F, Chaudry I H. Hepatocellular dysfunction occurs earlier than the onset of hyperdynamic circulation during sepsis.  Shock . 1995;  3 21-26
  • 39 Wang P, Ba Z F, Chaudry I H. Nitric oxide. To block or enhance its production during sepsis?.  Arch Surg . 1994;  129 1137-1142
  • 40 Kilbourn R G, Szabo C, Traber D L. Beneficial versus detrimental effects of nitric oxide synthase inhibitors in circulatory shock: lessons learned from experimental and clinical studies.  Shock . 1997;  7 235-246
  • 41 Harbrecht B G, Billiar T R, Stadler J. Nitric oxide synthesis serves to reduce hepatic damage during acute murine endotoxemia.  Crit Care Med . 1992;  20 1568-1574
  • 42 Wang Y, Lawson J A, Jaeschke H. Differential effect of 2-aminoethyl-isothiourea, an inhibitor of the inducible nitric oxide synthase, on microvascular blood flow and organ injury in models of hepatic ischemia-reperfusion and endotoxemia.  Shock . 1998;  10 20-25
  • 43 Bauer M, Zhang J X, Bauer I, Clemens M G. Endothelin-1 as a regulator of hepatic microcirculation: Sublobular distribution of effects and impact on hepatocellular secretory function.  Shock . 1994;  1 457-465
  • 44 Bauer M, Zhang J X, Bauer I, Clemens M G. ET-1 induced alterations of hepatic microcirculation: Sinusoidal and extrasinusoidal sites of action.  Am J Physiol . 1994;  267 G143-G149
  • 45 Sakamoto M, Ueno T, Kin M. Ito cell contraction in response to endothelin-1 and substance P.  Hepatology . 1993;  18 978-983
  • 46 Housset C, Rockey D C, Bissell D M. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1.  Proc Natl Acad Sci USA . 1993;  90 9266-9270
  • 47 Rockey D C. Characterization of endothelin receptors mediating rat hepatic stellate cell contraction.  Biochem Biophys Res Commun . 1995;  207 725-731
  • 48 Ruetten H, Thiemermann C. Effect of selective blockade of endothelin ETB receptors on the liver dysfunction and injury caused by endotoxaemia in the rat.  Br J Pharmacol . 1996;  119 479-486
  • 49 Higuchi H, Satoh T. Endothelin-1 induces vasoconstriction and nitric oxide release via endothelin ET(B) receptors in isolated perfused rat liver.  Eur J Pharmacol . 1997;  328 175-182
  • 50 Suematsu M, Goda N, Sano T. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver.  J Clin Invest . 1995;  96 2431-2437
  • 51 Downard P J, Wilson M A, Spain D A. Heme oxygenase-dependent carbon monoxide production is a hepatic adaptive response to sepsis.  J Surg Res . 1997;  71 7-12