Plant Biol (Stuttg) 2000; 2(6): 586-597
DOI: 10.1055/s-2000-16648
Review Article
Georg Thieme Verlag Stuttgart ·New York

Linker Histones and HMG1 Proteins of Higher Plants

A. Jerzmanowski 1,2 , M. Przewłoka 1 , K. D. Grasser 3
  • 1 Laboratory of Plant Molecular Biology, Warsaw University, Warsaw, Poland
  • 2 Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
  • 3 Department of Life Science, Aalborg University, Aalborg, Denmark
Further Information

Publication History

June 6, 2000

September 19, 2000

Publication Date:
27 August 2001 (online)

Abstract

Linker histones and the proteins belonging to the high mobility group 1 (HMG1) family are the most abundant proteins associated with the internucleosomal linker DNA in eukaryotic chromatin. Despite their relative abundance, there are indications that they may be involved in specific developmental pathways. In higher plants, a variety of these chromosomal proteins has been identified and characterized. In this report, we give an overview of the present knowledge about these two protein families, and discuss their likely functions in plants.

References

  • 01 Aidinis,  V.,, Bonaldi,  T.,, Beltrame,  M.,, Santagata,  S.,, Bianchi,  M. E.,, and Spanopoulou,  E.. (1999);  The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2.  Mol. Cell. Biol.. 19 6532-6542
  • 02 Allan,  J.,, Hartmann,  P. G.,, Crane-Robinson,  C.,, and Aviles,  F. X.. (1980);  The structure of histone H1 and its location in the nucleosome.  Nature. 288 675-679
  • 03 Alonso,  J. C.,, Guitierrez,  C.,, and Rojo,  F.. (1995);  The role of the chromatin-associated protein Hbsu in β-mediated recombination is to facilitate the joining of distant sites.  Mol. Microbiol.. 18 471-478
  • 04 An,  W.,, van Holde,  K.,, and Zlatanova,  J.. (1998);  The non-histone chromatin protein HMG1 protects linker DNA on the side opposite to that protected by linker histones.  J. Biol. Chem. 173 26289-26291
  • 05 Ascenzi,  R., and Gantt,  J. S.. (1997);  A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histones.  Plant Mol. Biol. 34 629-641
  • 06 Ascenzi,  R., and Gantt,  J. S.. (1999 a);  Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. .  Plant Mol. Biol.. 41 159-169
  • 07 Ascenzi,  R., and Gantt,  J. S.. (1999 b);  Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. .  Chromosoma. 108 345-355
  • 08 Ayer,  D. E.. (1999);  Histone deacetylases: transcriptional repression with SINers and NuRDs.  Trends in Cell Biol.. 9 193-198
  • 09 Bewley,  C. A.,, Gronenborn,  A. M.,, and Clore,  G. M.. (1998);  Minor groove-binding architectural proteins: structure, function, and DNA recognition.  Annu. Rev. Biophys. Biomol. Struct.. 27 105-131
  • 10 Boonyaratanakornkit  V.,, Melvin,  V.,, Prendergast,  P.,, Altmann,  M.,, Ronfani,  L.,, Bianchi,  M. E.,, Taraseviciene,  L.,, Nordeen,  S. K.,, Allegretto,  E. A.,, and Edwards,  D. P.. (1998);  High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells.  Mol. Cell. Biol.. 18 4471-4487
  • 11 Buckle,  R. S.,, Maman,  J. D.,, and Allan,  J.. (1992);  Site-directed mutagenesis studies on the binding of the globular domain of linker histone H5 to the nucleosome.  J. Mol. Biol.. 223 651-659
  • 12 Bustin,  M.. (1999);  Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins.  Mol. Cell. Biol.. 19 5237-5246
  • 13 Bustin,  M., and Reeves,  R.. (1996);  High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function.  Prog. Nucleic Acids Res.. 54 35-100
  • 14 Calogero,  S.,, Grassi,  F.,, Aguzzi,  A.,, Voigtländer,  T.,, Ferrier,  P.,, Ferrari,  S.,, and Bianchi,  M. E.. (1999);  The lack of chromosomal protein HMG1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice.  Nat. Genet.. 22 276-280
  • 15 Chaboute,  M. E.,, Chaubet,  N.,, Gigot,  C.,, and Philipps,  G.. (1993);  Histones and histone genes in higher plants: structure and genomic organization.  Biochimie. 75 523-531
  • 16 Chan,  M.-T., and Yu,  S.-M.. (1998);  The 3′ untranslated region of a rice α-amylase gene functions as a sugar-dependent mRNA stability determinant.  Proc. Natl. Acad. Sci. USA. 95 6543-6547
  • 17 Clark,  K. L.,, Halay,  E. D.,, Lai,  E.,, and Burley,  S. K.. (1993);  Co-crystal structure of HNF-3/fork head DNA-recognition motif resembles histone H5.  Nature. 364 412-420
  • 18 Clark,  D. J.,, Hill,  S. C.,, Martin,  S. R.,, and Thomas,  J. O.. (1988);  α-helix in the carboxy-terminal domains of histones H1 and H5.  EMBO J.. 7 69-75
  • 19 Corlett,  J. E.,, Wilkinson,  S.,, and Thompson,  A. J.. (1998);  Diurnal control of the drought-inducible putative histone H1 gene in tomato (Lycopersicon esculentum Mill. L.).  J. Exp. Bot.. 49 945-952
  • 20 Crane-Robinson,  C.. (1999);  How do linker histones mediate differential gene expression?.  BioEssays. 21 367-371
  • 21 Dasso,  M.,, Dimitrov,  S.,, and Wolffe,  A. P.. (1994);  Nuclear assembly is independent of linker histones.  Proc. Natl. Acad. Sci. USA. 91 12477-12481
  • 22 Draves,  P. H.,, Lowary,  P. T.,, and Widom,  J.. (1992);  Co-operative binding of the globular domain of histone H5 to DNA.  J. Mol. Biol.. 225 1105-1121
  • 23 Falciola,  L.,, Spada,  F.,, Calogero,  S.,, Längst,  G.,, Voit,  R.,, Grummt,  I.,, and Bianchi,  M. E.. (1997);  High mobility group 1 protein is not stably associated with the chromosomes of somatic cells.  J. Cell Biol.. 137 19-26
  • 24 Gajiwala,  K. S.,, Chen,  H.,, Cornille,  F.,, Roques,  B. P.,, Reith,  W.,, Mach,  B.,, and Burley,  S. K.. (2000);  Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding.  Nature. 403 916-921
  • 25 Ghidelli,  S.,, Claus,  P.,, Thies,  G.,, and Wisniewski,  J. R.. (1997);  High mobility group proteins cHMG1a, cHMG1b, and cHMGI are distinctly distributed in chromosomes and differentially expressed during ecdysone dependent cell differentiation.  Chromosoma. 105 369-379
  • 26 Goodwin,  G. H.,, Sanders,  C.,, and Johns,  E. W.. (1973);  A new group of chromatin-associated proteins with a high content of acidic and basic amino acids.  Eur. J. Biochem.. 38 14-19
  • 27 Goytisolo,  F. A.,, Gerchman,  S.-E.,, Yu,  X.,, Rees,  C.,, Graziano,  V.,, Ramakrishnan,  V.,, and Thomas,  J. O.. (1996);  Identification of two DNA-binding sites on the globular domain of histone H5.  EMBO J.. 15 3421-3429
  • 28 Grasser,  K. D.. (1995);  Plant chromosomal high mobility group (HMG) proteins.  Plant J.. 7 185-192
  • 29 Grasser,  K. D.. (1998);  HMG1 and HU proteins: architectural elements in plant chromatin.  Trends Plant Sci.. 3 260-265
  • 30 Grasser,  K. D.,, Grimm,  R.,, and Ritt,  C.. (1996);  Maize chromosomal HMGc: two closely related structure-specific DNA-binding proteins specify a second type of plant HMG-box protein.  J. Biol. Chem.. 271 32900-32906
  • 31 Grasser,  K. D.,, Krech,  A. B.,, and Feix,  G.. (1994);  The maize chromosomal HMGa protein recognises structural features of DNA and increases DNA flexibility.  Plant J.. 6 351-358
  • 32 Grosschedl,  R.. (1995);  Higher-order nucleoprotein complexes in transcription: analogies with site-specific recombination.  Curr. Opin. Cell Biol.. 7 362-370
  • 33 Gupta,  R.,, Webster,  C. I.,, Walker,  A. R.,, and Gray,  J. C.. (1997);  Chromosomal location and expression of the single-copy gene encoding high-mobility-group protein HMGI/Y in Arabidopsis thaliana. .  Plant Mol. Biol.. 34 529-536
  • 34 Isackson,  P. J.,, Clow,  L. G.,, and Reeck,  G. R.. (1981);  Comparison of the salt dissociations of high molecular weight HMG non-histone chromatin proteins from double-stranded DNA and from chromatin.  FEBS Lett.. 125 30-34
  • 35 Krech,  A. B.,, Wulff,  D.,, Grasser,  K. D.,, and Feix,  G.. (1999);  Plant chromosomal HMGI/Y proteins and histone H1 exhibit a protein domain of common origin.  Gene. 230 1-5
  • 36 Lalonde,  S.,, Beebe,  D. U.,, and Saini,  H. S.. (1997);  Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit.  Sex plant Reprod.. 10 40-48
  • 37 Lindauer,  A.,, Mueller,  K.,, and Schmitt,  R.. (1993);  Two histone H1-encoding genes of the green alga Volvox carteri features intermediate between plant and animal genes.  Gene. 129 59-68
  • 38 Mathew,  C. G. P.,, Goodwin,  G. H.,, and Johns,  E. W.. (1979);  Studies on the association of the high mobility group non-histone chromatin proteins with isolated nucleosomes.  Nucleic Acids Res.. 6 167-179
  • 39 Mitieux,  G., and Roux,  B.. (1984);  Study of a chromatin domain different from bulk chromatin in barley nuclei.  Biochim. Biophys. Acta. 781 286-293
  • 40 Mosrin-Huaman,  C.,, Canaple,  L.,, Locker,  D.,, and Decoville,  M.. (1998);  DSP1 gene of Drosophila melanogaster encodes an HMG-domain protein that plays multiple roles in development.  Dev. Genet.. 23 324-334
  • 41 Murphy,  F. V.,, Sweet,  R. M.,, and Churchill,  M. E. A.. (1999);  The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition.  EMBO J.. 18 6610-6618
  • 42 Newrock,  K. M.,, Alfageme,  C. R.,, Nardi,  C. V.,, and Cohen,  L. H.. (1977);  Histone changes during chromatin remodeling in embryogenesis.  Cold Spring Harbor Symp. Quant. Biol.. 42 421-431
  • 43 Ner,  S. S., and Travers,  A. A.. (1994);  HMG-D, the Drosophila homologue of HMG-1 protein, is associated with early embryonic chromatin in the absence of histone H1.  EMBO J.. 13 1817-1822
  • 44 Nightingale,  K.,, Dimitrov,  S.,, Reeves,  R.,, and Wolffe,  A. P.. (1996);  Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organising chromatin.  EMBO J.. 15 548-561
  • 45 Orphanides,  G.,, Wu,  W.-H.,, Lane,  W. S.,, Hampsey,  M.,, and Reinberg,  D.. (1999);  The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins.  Nature. 400 284-288
  • 46 Paull,  T. T.,, Haykinson,  M. J.,, and Johnson,  R. C.. (1993);  The nonspecific DNA-binding and bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures.  Genes Dev.. 7 1521-1534
  • 47 Paull,  T. T.,, Carey,  M.,, and Johnson,  R. C.. (1996);  Yeast HMG proteins NHP6A/B potentiate promoter specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. .  Genes Dev.. 10 2769-2781
  • 48 Pedersen,  T. J.,, Arwood,  L. J.,, Spiker,  S.,, Guiltinan,  M. J.,, and Thompson,  W. F.. (1991);  High mobility group proteins bind to AT-rich tracts flanking plant genes.  Plant Mol. Biol.. 16 95-104
  • 49 Prymakowska-Bosak,  M.,, Przewloka,  M. R.,, Iwkiewicz,  J.,, Egierszdorff,  S.,, Kuras,  M.,, Chaubet,  N.,, Gigot,  C.,, Spiker,  S.,, and Jerzmanowski,  A.. (1996);  Histone H1 overexpressed to a high level in tobacco affects certain developmental programs but has limited effect on basal cellular functions.  Proc. Natl. Acad. Sci. USA. 93 10250-10255
  • 50 Prymakowska-Bosak,  M.,, Przewłoka,  M. R.,, Slusarczyk,  J.,, Kuras,  M.,, Lichota,  J.,, Kilianczyk,  B.,, and Jerzmanowski,  A.. (1999);  Linker histones play a role in male meiosis and the development of pollen grains in tobacco.  The Plant Cell. 11 2317-2329
  • 51 Przewłoka,  M. R.,, Stemmer,  C.,, Grasser,  K. D.,, Prymakowska-Bosak,  M.,, and Jerzmanowski,  A.. GeneBank Accession No. AF170089. 
  • 52 Ramakrishnan,  V.,, Finch,  J. T.,, Graziano,  V.,, Lee,  P. L.,, and Sweet,  R. M.. (1993);  Crystal structure of globular domain of histone H5 and its implication for nucleosome binding.  Nature. 362 219-223
  • 53 Reichheld,  J.-P.,, Sonobe,  B. C.,, Chaubet,  N.,, and Gigot,  C.. (1995);  Cell cycle-regulated histone gene expression in synchronized plant cells.  Plant J.. 7 245-252
  • 54 Renauld,  H., and Gasser,  S. M.. (1997);  Heterochromatin: A meiotic matchmaker?.  Trends Cell Biol.. 7 201-205
  • 55 Riggs,  D. C.. (1997);  Meiotin-1: the meiosis readiness factor?.  BioEssays. 19 925-931
  • 56 Ritt,  C.,, Grimm,  R.,, Fernández,  S.,, Alonso,  J. C.,, and Grasser,  K. D.. (1998 a);  Basic and acidic regions flanking the HMG domain of maize HMGa modulate the interactions with DNA and the self-association of the protein.  Biochemistry. 37 2673-2681
  • 57 Ritt,  C.,, Grimm,  R.,, Fernández,  S.,, Alonso,  J. C.,, and Grasser,  K. D.. (1998 b);  Four differently chromatin-associated maize HMG domain proteins modulate DNA structure and act as architectural elements in nucleoprotein complexes.  Plant J.. 14 623-631
  • 58 Röttgers,  K.,, Krohn,  N. M.,, Lichota,  J.,, Stemmer,  C.,, Merkle,  T.,, and Grasser,  K. D.. (2000);  DNA-interactions and nuclear localisation of the chromosomal HMG domain protein SSRP1 from maize.  Plant J.. 23 395-405
  • 59 Saini,  H. S.. (1997);  Effects of water stress on male gametophyte development in plants.  Sex Plant Reprod.. 10 67-73
  • 60 Sawa,  A.,, Watanabe,  K.,, Goto,  K.,, Kanaya,  E.,, Morita,  E. H.,, and Okada,  K.. (1999);  Filamentous flower, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains.  Genes Dev.. 13 1079-1088
  • 61 Sheoran,  I. S., and Saini,  H. S.. (1996);  Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen.  Sex Plant Reprod.. 9 161-169
  • 62 Schröter,  H., and Bode,  J.. (1982);  The binding site for large and small high-mobility-group (HMG) proteins. Studies on HMG-nucleosome interactions in vitro. .  Eur. J. Biochem.. 127 429-436
  • 63 Schultz,  S. C.,, Shields,  G. C.,, and Steitz,  T. A.. (1991);  Crystal structure of a CAP-DNA complex: the DNA is bent by 90°.  Science. 253 1001-1007
  • 64 Schulze,  E., and Schulze,  B.. (1995);  The vertebrate linker histones H1o, H5, and H1M are descendants of invertebrate “orphon” histone H1 genes.  J. Mol. Evol.. 41 833-840
  • 65 Segall,  A. M.,, Goodman,  S. D.,, and Nash,  H. A.. (1994);  Architectural elements in nucleoprotein complexes: interchangeability of specific and non-specific DNA binding proteins.  EMBO J.. 13 4536-4548
  • 66 Shen,  X.,, Yu,  L.,, Weir,  J. W.,, and Gorovsky,  M. A.. (1995);  Linker histones are not essential and affect chromatin condensation.  Cell. 82 47-56
  • 67 Shen,  X., and Gorovsky,  M. A.. (1996);  Linker histone H1 regulates specific gene expression but not global transcription in vitro. .  Cell. 86 475-483
  • 68 Sirotkin,  A. M.,, Edelman,  W.,, Cheng,  G. H.,, Kleinszanto,  A.,, Kucherlapati,  R.,, and Skoultchi,  R.. (1995);  Mice develop normally without the H1o linker histone.  Proc. Natl. Acad. Sci. USA. 92 6434-6438
  • 69 Smith,  J. G.,, Hill,  R. S.,, and Baldwin,  J. Pl.. (1995);  Plant chromatin structure and post-translational modifications.  Crit. Rev. Plant Sci.. 14 299-328
  • 70 Spada,  F.,, Brunet,  A.,, Mercoer,  Y.,, Renard,  J.-P.,, Bianchi,  M. E.,, and Thompson,  E. M.. (1998);  High mobility group 1 (HMG1) protein in mouse preimplantation embryos.  Mech. Dev.. 76 57-66
  • 71 Spiker,  S.. (1985);  Plant chromatin structure.  Annu. Rev. Plant. Physiol.. 36 235-253
  • 72 Spiker,  S.. (1988 a) Histone variants and high mobility group non-histone chromosomal proteins of higher plants. Architecture of Eukaryotic Genes. Kaul, G., ed. Weinheim; Federal Republic of Germany: VCH Verlagsgesellschaft pp. 143-162
  • 73 Spiker,  S.. (1988 b);  Histone variants and high mobility group non-histone chromosomal proteins of higher plants: their potential for forming a chromatin structure that is either poised for transcription or transcriptionally inert.  Physiol. Plant.. 74 200-213
  • 74 Spiker,  S.,, Murray,  M. G.,, and Thompson,  W. F.. (1983);  DNaseI sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.  Proc. Natl. Acad. Sci. USA. 80 815-819
  • 75 Steinbach,  O. C.,, Wolffe,  A. P.,, and Rupp,  R. A. W.. (1997);  Somatic linker histones cause loss of mesodermal competence in Xenopus. .  Nature. 389 395-399
  • 76 Stemmer,  C.,, Grimm,  R.,, and Grasser,  K. D.. (1999);  Occurrence of five different chromosomal HMG1 proteins in various maize tissues.  Plant Mol. Biol.. 41 351-361
  • 77 Stemmer,  C.,, Ritt,  C.,, Igloi,  G. L.,, Grimm,  R.,, and Grasser,  K. D.. (1997);  Variability in Arabidopsis thaliana chromosomal high-mobility-group-1-like proteins.  Eur. J. Biochem.. 250 646-652
  • 78 Szekeres,  M.,, Haizel,  T.,, Adam,  E.,, and Nagy,  F.. (1995);  Molecular characterisation and expression of a tobacco histone H1 cDNA.  Plant Mol. Biol.. 27 597-606
  • 79 Takamay,  Y., and Nakayama,  T.. (1997);  A single copy of linker H1 genes is enough for the proliferation of the DT40 chicken B cell line, and linker histone variants participate in regulation of gene expression.  Genes to Cells. 2 711-723
  • 80 Tanaka,  I.,, Ono,  K.,, and Fukuda,  T.. (1998);  The developmental fate of angiosperm pollen is associated with a preferential decrease in the level of histone H1 in the vegetative nucleus.  Planta. 206 561-569
  • 81 Thomas,  J. O.,, Rees,  C.,, and Finch,  J. T.. (1992);  Cooperative binding of the globular domains of histones H1 and H5 to DNA.  Nucleic Acids Res.. 20 187-194
  • 82 Thomas,  J. O.. (1999);  Histone H1: location and role.  Curr. Opin. in Cell Biol.. 11 312-317
  • 83 Tomaszewski,  R., and Jerzmanowski,  A.. (1997);  The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus leavis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro. .  Nucleic Acids Res.. 25 458-465
  • 84 Tomaszewski,  R.,, Mogielnicka,  E.,, and Jerzmanowski,  A.. (1998);  Both the 5S rRNA gene and the AT-rich flanks of Xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of polIII-type genes in in vitro reconstitutes chromatin.  Nucleic Acids Res.. 26 5596-5601
  • 85 Travers,  A. A.. (1999) Nucleosomal location of the linker histone and its role in transcriptional repression. “Transcription Regulation in Eukaryots”. Chambon, P., Fukasawa, T., Kornberg, R.D., and Coath, C., eds. Strasbourg; HFSP pp. 36-41
  • 86 Twell,  D.,, Park,  S. K.,, and Lalanne,  E.. (1998);  Asymmetric division and cell-fate determination in developing pollen.  Trends Plant. Sci.. 3 305-310
  • 87 Ura,  K.,, Nightingale,  K.,, and Wolffe,  A. P.. (1996);  Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression.  EMBO J.. 15 4959-4969
  • 88 Varga-Weisz,  P.,, van Holde,  K.,, and Zlatanova,  J.. (1994);  Displacement of linker histones from four-way junction DNA by HMG1: Implications for transcription.  Biochem. Biophys. Res. Commun.. 203 1904-1911
  • 89 Waterborg,  J. H., and Robertson,  A. J.. (1996);  Common features of analogous replacement histone H3 genes in animals and plants.  J. Mol. Evol.. 43 194-206
  • 90 Webster,  C. I.,, Cooper,  M. A.,, Packman,  L. C.,, Williams,  D. H.,, and Gray,  J. C.. (2000);  Kinetic analysis of high-mobility-group proteins HMG-1 and HMG-I/Y binding to cholesterol-tagged DNA on a supported lipid monolayer.  Nucleic Acids Res.. 28 1618-1624
  • 91 Webster,  C. I.,, Packman,  L. C.,, Pwee,  K.-H.,, and Gray,  J. C.. (1997);  High mobility group proteins HMG-1 and HMGI/Y bind to a positive regulatory region of the pea plastocyanin gene.  Plant J.. 11 703-715
  • 92 Wei,  T., and O'Connell,  M. A.. (1996);  Structure and characterization of a putative drought-inducible H1 histone gene.  Plant Mol. Biol.. 30 255-268
  • 93 Werner,  M. H., and Burley,  S. K.. (1997);  Architectural transcription factors: proteins that remodel DNA.  Cell. 88 733-736
  • 94 Wisniewski,  J. R.,, Krohn,  N. M.,, Heyduk,  E.,, Grasser,  K. D.,, and Heyduk,  T.. (1999);  HMG1 proteins from evolutionary distant organisms distort B-DNA conformation in similar way.  Biochim. Biophys. Acta. 1447 25-34
  • 95 Yaneva,  J.,, Leuba,  S. H.,, van Holde,  K.,, and Zlatanova,  J.. (1997);  The major chromatin protein histone H1 binds preferentially to cis-platinum-damaged DNA.  Proc. Natl. Acad. Sci. USA. 94 13448-13451
  • 96 Zhao,  K.,, Kas,  E.,, Gonzales,  E.,, and Laemmli,  U. K.. (1993);  SAR-dependent mobilisation of histone H1 by HMGI/Y in vitro: HMGI/Y is enriched in H1 depleted chromatin.  EMBO J.. 12 3237-3247
  • 97 Zlatanova,  J., and van Holde,  K.. (1998);  Linker histones versus HMG1/2: a struggle for dominance?.  BioEssays. 20 584-588

A. Jerzmanowski

Laboratory of Plant Molecular Biology
Warsaw University

Pawińskiego 5 A
02-106 Warsaw
Poland

Email: andyj@ibb.waw.pl

Section Editor: H. Rennenberg