Subscribe to RSS
DOI: 10.1055/s-2000-7517
Modulation of gastrointestinal inflammation by chimeric proteins in experimental models
Publication History
Publication Date:
31 December 2000 (online)
Summary
Conventional drug therapy in patients with chronic gastrointestinal inflammation is clinically effective in the majority of patients. However, in a relevant group of patients with highly active disease refractory to conventional drugs and for patients with severe side effects new therapeutic strategies are necessary. An advanced understanding of the immune mechanisms underlying chronic diseases resulted in the possibility to use chimeric proteins, in which the variable domains of an immunoglobulin are replaced by extracellular domains of cell surface molecules or cytokines for specific immunomodulation. The immunomodulating effects of chimeric proteins such as CTLA- 4-IgG, interleukin- 10-IgG, IL- 2-IgG or tumour necrosis factor (TNF)-receptor IgG have been proven beneficial in a variety of in vitro and in vivo models of chronic gastrointestinal inflammation and autoimmune diseases. It thus seems likely that genetically engineered fusion proteins targeting specific elements of the immune response may become an essential element in new clinical treatment protocols.
Key words: Cytokine Fusion Proteins - Inflammation - Inflammatory Bowel Disease
Modulation der gastrointestinalen Entzündung durch chimäre Proteine in experimentellen Modellen
Die me-dikamentöse Standardtherapie bei Patienten mit chronisch entzündlichen Darmerkrankungen ist in der Regel ausreichend. Bei Patienten mit chronischer Krankheitsaktivität oder bei Patienten mit relevanten Nebenwirkungen der etablierten Medikamente sind jedoch neue therapeutische Strategien notwendig. Das bessere Verständnis der immunologischen Reaktionen bei chronischen Entzündungen führte in jüngster Zeit zur Entwicklung von chimären Proteinen, bei denen die variable Domäne eines Immunglobulins durch den extrazellulären Teil eines Zelloberflächenantigens oder durch funktionell-aktive Sequenzen von Zytokinen ersetzt wurden. Die immunmodulatorischen Effekte dieser Fusionsproteine, wie z. B. des CTLA- 4-IgG, des Interleukin- 10-IgG, des IL- 2-IgG oder des Tumor-Nekrose-Faktor (TNF)-Rezeptor-IgG sind erfolgreich in verschiedenen In-vitro- und In-vivo-Modellen getestet worden. Aufbauend auf diese Ergebnisse könnten genetisch hergestellte Fusionsproteine zentrale Bestandteile zukünftiger klinischer Therapiestudien werden.
Schlüsselwörter: Zytokinfusionsproteine - Entzündung - Chronisch-entzündliche Darmerkrankung
References
- 1 Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology. 1998; 115 182-205
- 2 Duchmann R, Neurath M, Märker-Hermann E, Meyer z um Büschenfelde KH. Immune responses towards intestinal bacteria-current concepts and future perspectives. Z Gastroenterol. 1997; 35 337-46
- 3 Evans R C, Clarke L, Heath P. et al . Treatment of ulcerative colitis with an engineered human anti-TNFalpha antibody CDP571. Aliment Pharmacol Ther. 1997; 11 1031-5
- 4 Harding F A, McArthur J G, Gross J A, Raulet D H, Allison J P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992; 356 607-9
- 5 Gulwani A B, Akolkar P N, Minassian A. et al . Selective expansion of specific T cell receptors in the inflamed colon of Crohn’s disease. J Clin Invest. 1996; 98 1344-54
- 6 Probert C S, Chott A, Turner J. et al . Persistent clonal expansions of peripheral blood CD4+ lymphocytes in chronic inflammatory bowel disease. J Immunol. 1996; 157 3183-91
- 7 Leach M W, Bean A G, Mauze S, Coffman R L, Powrie F. Inflammatory bowel disease in C.B- 17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T cells. Am J Pathol. 1996; 148 1503-15
- 8 Claesson M H, Rudolphi A, Kofoed S, Poulsen S S, Reimann J. CD4+ T lymphocytes injected into severe combined immunodeficient (SCID) mice lead to an inflammatory and lethal bowel disease. Clin Exp Immunol. 1996; 104 491-500
- 9 Romagnani S. Th1 and Th2 in human diseases. Clin Immunol Immunopathol. 1996; 80 225-35
- 10 Weiner H L, Friedman A, Miller A. et al . Oral tolerance: Immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol. 1994; 12 809-37
- 11 Marth T, Strober W, Kelsall B L. High dose oral tolerance in ovalbumin TCR-transgenic mice: Systemic neutralization of IL- 12 augments TGF-beta secretion and T cell apoptosis. J Immunol. 1996; 157 2348-57
- 12 Stallmach A, Strober W, MacDonald T T, Lochs H, Zeitz M. Induction and modulation of gastrointestinal inflammation. Immunology Today. 1998; 19 438-41
- 13 Robinson M. Optimizing therapy for inflammatory bowel disease. Am J Gastroenterol. 1997; 92 (Suppl) 12S-17S
- 14 Emmrich J, Seyfarth M, Fleig W E, Emmrich F. Treatment of inflammatory bowel disease with anti-CD4-monoclonal antibody. Lancet. 1991; 338 570-1
- 15 Otto G, Thies J, Kraus T. et al . Monoclonal anti-CD25 for acute rejection after liver transplantation. Lancet. 1991; 338 195
- 16 Vincenti F, Kirkman R, Light S. et al . Interleukin- 2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med. 1998; 338 161-5
- 17 Lenschow D J, Zeng Y, Thistlethwaite J. et al . Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science. 1992; 257 789-92
- 18 Bogers W M, Lang F, Parker K E. et al . Rat interleukin- 2 immunoglobulin M fusion proteins are cytotoxic in vitro for cells expressing the IL- 2 receptor and can abolish cell-mediated immunity in vivo. Transplantation. 1994; 58 932-9
- 19 Finck B K, Linsley P S, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science. 1994; 265 1225-7
- 20 Kunzendorf U, Pohl T, Bulfone P S. et al . Suppression of cell-mediated and humoral immune responses by an interleukin- 2-immunoglobulin fusion protein in mice. J Clin Invest. 1996; 97 1204-10
- 21 Capon D J, Chamow S M, Mordenti J. et al . Designing CD4 immunoadhesins for AIDS therapy. Nature. 1989; 337 525-31
- 22 Traunecker A, Schneider J, Kiefer H, Karjalainen K. Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature. 1989; 339 68-70
- 23 Meuer S, Schraven B, Samstag Y. An alternative pathway of T cell activation. Int Arch Allergy Immunol. 1994; 104 216-21
- 24 Endler-Jobst B, Schrawen B, Hutmacher B, Meuer S. Human T cell response to IL- 1 and IL- 6 are dependent on signals mediated through CD2. J Immunol. 1991; 146 1736
- 25 Meuer S C, Samstag Y, Schraven B. Accessory signals for growth and differentiation of human T lymphocytes. Cancer Surv. 1995; 22 63-73
- 26 Jenkins M K, Taylor P S, Norton S D, Urdahl K B. CD28 delivers a costimulatory signal involved in antigen-specific IL- 2 production by human T cells. J Immunol. 1991; 147 2461-6
- 27 Maiuri L, Auricchio S, Coletta S. et al . Blockage of T-cell costimulation inhibits T-cell action in celiac disease. Gastroenterology. 1998; 115 564-72
- 28 Schuppan D, Dieterich W, Riecken E O. Exposing gliadin as a tasty food for lymphocytes. Nat Med. 1998; 4 666-7
- 29 Stallmach A, Belitz H D, Gellermann B. et al . Effects of gliadin peptides B1-B4 in celiac disease. I. Organ culture studies. J Pediatr Gastroenterol Nutr. 1987; 6 335-40
- 30 de R itis G, Auricchio S, Jones H W. et al . In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology. 1988; 94 41-9
- 31 Picarelli A, Maiuri L, Frate A. et al . Production of antiendomysial antibodies after in-vitro gliadin challenge of small intestine biopsy samples from patients with coeliac disease. Lancet. 1996; 348 1065-7
- 32 Stüber E, Strober W, Neurath M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med. 1996; 183 693-8
- 33 Stallmach A, Wittig B M, Giese T. et al . Protection of Trinitrobenzene Sulfonic Acid-induced Colitis by an Interleukin- 2-IgG2b Fusion Protein in Mice. Gastroenterology. 1999; 117: 866-76;
- 34 Sutterwala F S, Noel G J, Clynes R, Mosser D M. Selective suppression of interleukin- 12 induction after macrophage receptor ligation. J Exp Med. 1997; 185 1977-85
- 35 Sutterwala F S, Noel G J, Salgame P, Mosser D M. Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med. 1998; 188 217-22
- 36 Kühn R, Lohler J, Rennick D, Rajewsky K, Müller W. Interleukin- 10-deficient mice develop chronic enterocolitis. Cell. 1993; 75 263-74
- 37 Powrie F, Leach M W, Mauze S. et al . Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994; 1 553-62
- 38 Ribbons K A, Thompson J H, Liu X. et al . Anti-inflammatory properties of interleukin- 10 adminstration in hapten-induced colitis. Eur J Pharmacol. 1997; 323 245-54
- 39 Pender S LF, Breese E J, Günther U. et al . Suppression of T cell-mediated injury in human gut by interleukin 10: Role of matrix metalloproteinases. Gastroenterology. 1998; 115 573-83
- 40 Chernoff A E, Granowitz E V, Shapiro L. et al . A randomized, controlled trial of IL- 10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol. 1995; 154 5492-9
- 41 Zheng X X, Steele A W, Hancock W W. et al . A noncytolytic IL- 10/Fc fusion protein prevents diabetes, blocks autoimmunity, and promotes suppressor phenomena in NOD mice. J Immunol. 1997; 158 4507-13
- 42 Williams D P, Parker K, Bacha P. et al . Diphtheria toxin receptor binding domain substitution with interleukin- 2: Genetic construction and properties of a diphtheria toxin-related interleukin- 2 fusion protein. Protein Eng. 1987; 1 493-8
- 43 Bousvaros A, Stevens A C, Strom T B, Murphy J, Lamont J T. Interleukin- 2 fusion protein (DAB389IL- 2) selectively targets activated human peripheral blood and lamina propria lymphocytes. Dig Dis Sci. 1997; 42 1542-8
- 44 Bastos M G, Pankewycz O, Rubin K V, Murphy J R, Strom T B. Concomitant administration of hapten and IL- 2-toxin (DAB486-IL- 2) results in specific deletion of antigen-activated T cell clones. J Immunol. 1990; 145 3535-9
- 45 Sewell K L, Parker K C, Woodworth T G. et al . DAB486IL- 2 fusion toxin in refractory rheumatoid arthritis. Arthritis Rheum. 1993; 36 1223-33
- 46 Tepler I, Schwartz G, Parker K. et al . Phase I trial of an interleukin- 2 fusion toxin (DAB486IL- 2) in hematologic malignancies: Complete response in a patient with Hodgkin’s disease refractory to chemotherapy. Cancer. 1994; 73 1276-85
- 47 LeMaistre C F, Saleh M N, Kuzel T M. et al . Phase I trial of a ligand fusion-protein (DAB389IL- 2) in lymphomas expressing the receptor for interleukin- 2. Blood. 1998; 91 399-405
- 48 Ullrich R, Schneider T, Schieferdecker H L. et al .Cell activation and proliferation in the large intestine of patients with Crohn’s disease or ulcerative colitis and controls. In: Mestecky J, Russell MW, Jackson S, Michalek SM, Tlaskalová-Hogenová, Sterzl J Plenum Press New York; 1995: 1281-2
- 49 Stallmach A, Schäfer F, Weber S. et al . Increased state of activation of CD4-positive T cells and elevated interferon-γ production in pouchitis. Gut. 1998; 43 499-505
- 50 MacDonald T T, Hutchings P, Choy M Y, Murch S, Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol. 1990; 81 301-5
- 51 Murch S H, Braegger C P, Walker S J, MacDonald T T. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993; 34 1705-9
- 52 van D ullemen HM, van D eventer SJ, Hommes D W. et al . Treatment of Crohn's disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology. 1995; 109 129-35
- 53 Stack W A, Mann S D, Roy A J. et al . Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn's disease. Lancet. 1997; 349 521-4
- 54 Targan S R, Hanauer S B, van D S. et al . A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med. 1997; 337 1029-35
- 55 Mohler K M, Torrance D S, Smith C A. et al . Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol. 1993; 151 1548-61
- 56 Pender S L, Fell J M, Chamow S M, Ashkenazi A, MacDonald T T. A p55 TNF receptor immunoadhesin prevents T cell-mediated intestinal injury by inhibiting matrix metalloproteinase production. J Immunol. 1998; 160 4098-103
- 57 Edwards C K. PEGylated recombinant human soluble tumour necrosis factor receptor type I (r-Hu-sTNF-RI): Novel high affinity TNF receptor deigned for chronic inflammatory diseases. Ann Rheum Dis. 1999; 58 (Suppl 1) 173-81
- 58 Neurath M F, Fuss I, Kelsall B, Meyer z um Büschenfelde KH, Strober W. Effect of IL- 12 and antibodies to IL- 12 on established granulomatous colitis in mice. Ann N Y Acad Sci. 1996; 795 368-70
- 59 Groux H, OGara A, Bigler M. A CD4+ T cell subset inhibits antigen-specific T-cell response and prevents colitis. Nature. 1997; 389 737-41
Address for correspondence
Andreas Stallmach, MD
Clinic for Internal Medicine II Saarland University
D-66421 Homburg/Saar, Germany
Fax: 0 49/68 41/16 32 64