Summary
Conventional drug therapy in patients with chronic gastrointestinal
inflammation is clinically effective in the majority of patients.
However, in a relevant group of patients with highly active disease
refractory to conventional drugs and for patients with severe side
effects new therapeutic strategies are necessary. An advanced understanding
of the immune mechanisms underlying chronic diseases resulted in the
possibility to use chimeric proteins, in which the variable domains
of an immunoglobulin are replaced by extracellular domains of cell
surface molecules or cytokines for specific immunomodulation. The
immunomodulating effects of chimeric proteins such as CTLA- 4-IgG,
interleukin- 10-IgG, IL- 2-IgG or tumour necrosis
factor (TNF)-receptor IgG have been proven beneficial in a variety
of in vitro and in vivo models of chronic gastrointestinal inflammation
and autoimmune diseases. It thus seems likely that genetically engineered
fusion proteins targeting specific elements of the immune response
may become an essential element in new clinical treatment protocols.
Key words: Cytokine Fusion Proteins - Inflammation - Inflammatory
Bowel Disease
Modulation der gastrointestinalen Entzündung
durch chimäre Proteine in experimentellen Modellen
Die me-dikamentöse
Standardtherapie bei Patienten mit chronisch entzündlichen
Darmerkrankungen ist in der Regel ausreichend. Bei Patienten
mit chronischer Krankheitsaktivität oder bei Patienten
mit relevanten Nebenwirkungen der etablierten Medikamente sind jedoch
neue therapeutische Strategien notwendig. Das bessere
Verständnis der immunologischen Reaktionen bei chronischen
Entzündungen führte in jüngster Zeit
zur Entwicklung von chimären Proteinen, bei denen die variable
Domäne eines Immunglobulins durch den extrazellulären
Teil eines Zelloberflächenantigens oder durch funktionell-aktive
Sequenzen von Zytokinen ersetzt wurden. Die immunmodulatorischen
Effekte dieser Fusionsproteine, wie z. B. des CTLA- 4-IgG,
des Interleukin- 10-IgG, des IL- 2-IgG oder des
Tumor-Nekrose-Faktor (TNF)-Rezeptor-IgG sind erfolgreich in verschiedenen
In-vitro- und In-vivo-Modellen getestet worden. Aufbauend auf diese
Ergebnisse könnten genetisch hergestellte Fusionsproteine
zentrale Bestandteile zukünftiger klinischer Therapiestudien
werden.
Schlüsselwörter: Zytokinfusionsproteine - Entzündung - Chronisch-entzündliche
Darmerkrankung
References
-
1
Fiocchi C.
Inflammatory
bowel disease: Etiology and pathogenesis.
Gastroenterology.
1998;
115
182-205
-
2
Duchmann R, Neurath M, Märker-Hermann E, Meyer z um Büschenfelde
KH.
Immune responses towards intestinal bacteria-current
concepts and future perspectives.
Z Gastroenterol.
1997;
35
337-46
-
3
Evans R C, Clarke L, Heath P. et al .
Treatment of ulcerative colitis with an
engineered human anti-TNFalpha antibody CDP571.
Aliment
Pharmacol Ther.
1997;
11
1031-5
-
4
Harding F A, McArthur J G, Gross J A, Raulet D H, Allison J P.
CD28-mediated
signalling co-stimulates murine T cells and prevents induction of
anergy in T-cell clones.
Nature.
1992;
356
607-9
-
5
Gulwani A B, Akolkar P N, Minassian A. et al .
Selective expansion of specific T cell
receptors in the inflamed colon of Crohn’s disease.
J
Clin Invest.
1996;
98
1344-54
-
6
Probert C S, Chott A, Turner J. et al .
Persistent clonal expansions of peripheral
blood CD4+ lymphocytes in chronic inflammatory bowel disease.
J
Immunol.
1996;
157
3183-91
-
7
Leach M W, Bean A G, Mauze S, Coffman R L, Powrie F.
Inflammatory
bowel disease in C.B- 17 scid mice reconstituted with the CD45RBhigh
subset of CD4+ T cells.
Am J Pathol.
1996;
148
1503-15
-
8
Claesson M H, Rudolphi A, Kofoed S, Poulsen S S, Reimann J.
CD4+ T
lymphocytes injected into severe combined immunodeficient (SCID)
mice lead to an inflammatory and lethal bowel disease.
Clin
Exp Immunol.
1996;
104
491-500
-
9
Romagnani S.
Th1
and Th2 in human diseases.
Clin Immunol Immunopathol.
1996;
80
225-35
-
10
Weiner H L, Friedman A, Miller A. et al .
Oral tolerance: Immunologic mechanisms
and treatment of animal and human organ-specific autoimmune diseases
by oral administration of autoantigens.
Annu Rev Immunol.
1994;
12
809-37
-
11
Marth T, Strober W, Kelsall B L.
High dose
oral tolerance in ovalbumin TCR-transgenic mice: Systemic neutralization
of IL- 12 augments TGF-beta secretion and T cell apoptosis.
J
Immunol.
1996;
157
2348-57
-
12
Stallmach A, Strober W, MacDonald T T, Lochs H, Zeitz M.
Induction
and modulation of gastrointestinal inflammation.
Immunology
Today.
1998;
19
438-41
-
13
Robinson M.
Optimizing
therapy for inflammatory bowel disease.
Am J Gastroenterol.
1997;
92
(Suppl)
12S-17S
-
14
Emmrich J, Seyfarth M, Fleig W E, Emmrich F.
Treatment
of inflammatory bowel disease with anti-CD4-monoclonal antibody.
Lancet.
1991;
338
570-1
-
15
Otto G, Thies J, Kraus T. et al .
Monoclonal
anti-CD25 for acute rejection after liver transplantation.
Lancet.
1991;
338
195
-
16
Vincenti F, Kirkman R, Light S. et al .
Interleukin- 2-receptor blockade
with daclizumab to prevent acute rejection in renal transplantation.
N
Engl J Med.
1998;
338
161-5
-
17
Lenschow D J, Zeng Y, Thistlethwaite J. et al .
Long-term survival of xenogeneic pancreatic
islet grafts induced by CTLA4lg.
Science.
1992;
257
789-92
-
18
Bogers W M, Lang F, Parker K E. et al .
Rat interleukin- 2 immunoglobulin
M fusion proteins are cytotoxic in vitro for cells expressing the
IL- 2 receptor and can abolish cell-mediated immunity in
vivo.
Transplantation.
1994;
58
932-9
-
19
Finck B K, Linsley P S, Wofsy D.
Treatment
of murine lupus with CTLA4Ig.
Science.
1994;
265
1225-7
-
20
Kunzendorf U, Pohl T, Bulfone P S. et al .
Suppression of cell-mediated and humoral
immune responses by an interleukin- 2-immunoglobulin fusion
protein in mice.
J Clin Invest.
1996;
97
1204-10
-
21
Capon D J, Chamow S M, Mordenti J. et al .
Designing CD4 immunoadhesins for AIDS therapy.
Nature.
1989;
337
525-31
-
22
Traunecker A, Schneider J, Kiefer H, Karjalainen K.
Highly efficient
neutralization of HIV with recombinant CD4-immunoglobulin molecules.
Nature.
1989;
339
68-70
-
23
Meuer S, Schraven B, Samstag Y.
An alternative pathway
of T cell activation.
Int Arch Allergy Immunol.
1994;
104
216-21
-
24
Endler-Jobst B, Schrawen B, Hutmacher B, Meuer S.
Human T cell response
to IL- 1 and IL- 6 are dependent on signals mediated through
CD2.
J Immunol.
1991;
146
1736
-
25
Meuer S C, Samstag Y, Schraven B.
Accessory
signals for growth and differentiation of human T lymphocytes.
Cancer
Surv.
1995;
22
63-73
-
26
Jenkins M K, Taylor P S, Norton S D, Urdahl K B.
CD28 delivers
a costimulatory signal involved in antigen-specific IL- 2
production by human T cells.
J Immunol.
1991;
147
2461-6
-
27
Maiuri L, Auricchio S, Coletta S. et al .
Blockage
of T-cell costimulation inhibits T-cell action in celiac disease.
Gastroenterology.
1998;
115
564-72
-
28
Schuppan D, Dieterich W, Riecken E O.
Exposing
gliadin as a tasty food for lymphocytes.
Nat Med.
1998;
4
666-7
-
29
Stallmach A, Belitz H D, Gellermann B. et al .
Effects of gliadin peptides B1-B4 in celiac
disease. I. Organ culture studies.
J Pediatr Gastroenterol
Nutr.
1987;
6
335-40
-
30
de R itis
G, Auricchio S, Jones H W. et al .
In vitro (organ culture) studies of the
toxicity of specific A-gliadin peptides in celiac disease.
Gastroenterology.
1988;
94
41-9
-
31
Picarelli A, Maiuri L, Frate A. et al .
Production of antiendomysial antibodies
after in-vitro gliadin challenge of small intestine biopsy samples
from patients with coeliac disease.
Lancet.
1996;
348
1065-7
-
32
Stüber E, Strober W, Neurath M.
Blocking
the CD40L-CD40 interaction in vivo specifically prevents the priming
of T helper 1 cells through the inhibition of interleukin 12 secretion.
J
Exp Med.
1996;
183
693-8
-
33
Stallmach A, Wittig B M, Giese T. et al .
Protection of Trinitrobenzene Sulfonic
Acid-induced Colitis by an Interleukin- 2-IgG2b Fusion
Protein in Mice.
Gastroenterology.
1999;
117: 866-76;
-
34
Sutterwala F S, Noel G J, Clynes R, Mosser D M.
Selective suppression
of interleukin- 12 induction after macrophage receptor
ligation.
J Exp Med.
1997;
185
1977-85
-
35
Sutterwala F S, Noel G J, Salgame P, Mosser D M.
Reversal of
proinflammatory responses by ligating the macrophage Fcgamma receptor
type I.
J Exp Med.
1998;
188
217-22
-
36
Kühn R, Lohler J, Rennick D, Rajewsky K, Müller W.
Interleukin- 10-deficient
mice develop chronic enterocolitis.
Cell.
1993;
75
263-74
-
37
Powrie F, Leach M W, Mauze S. et al .
Inhibition
of Th1 responses prevents inflammatory bowel disease in scid mice
reconstituted with CD45RBhi CD4+ T cells.
Immunity.
1994;
1
553-62
-
38
Ribbons K A, Thompson J H, Liu X. et al .
Anti-inflammatory properties of interleukin- 10
adminstration in hapten-induced colitis.
Eur J Pharmacol.
1997;
323
245-54
-
39
Pender S LF, Breese E J, Günther U. et al .
Suppression of T cell-mediated injury in
human gut by interleukin 10: Role of matrix metalloproteinases.
Gastroenterology.
1998;
115
573-83
-
40
Chernoff A E, Granowitz E V, Shapiro L. et al .
A randomized, controlled trial of IL- 10
in humans. Inhibition of inflammatory cytokine production and immune
responses.
J Immunol.
1995;
154
5492-9
-
41
Zheng X X, Steele A W, Hancock W W. et al .
A noncytolytic IL- 10/Fc
fusion protein prevents diabetes, blocks autoimmunity, and promotes
suppressor phenomena in NOD mice.
J Immunol.
1997;
158
4507-13
-
42
Williams D P, Parker K, Bacha P. et al .
Diphtheria toxin receptor binding domain
substitution with interleukin- 2: Genetic construction
and properties of a diphtheria toxin-related interleukin- 2
fusion protein.
Protein Eng.
1987;
1
493-8
-
43
Bousvaros A, Stevens A C, Strom T B, Murphy J, Lamont J T.
Interleukin- 2
fusion protein (DAB389IL- 2) selectively targets activated
human peripheral blood and lamina propria lymphocytes.
Dig
Dis Sci.
1997;
42
1542-8
-
44
Bastos M G, Pankewycz O, Rubin K V, Murphy J R, Strom T B.
Concomitant
administration of hapten and IL- 2-toxin (DAB486-IL- 2)
results in specific deletion of antigen-activated T cell clones.
J
Immunol.
1990;
145
3535-9
-
45
Sewell K L, Parker K C, Woodworth T G. et al .
DAB486IL- 2 fusion toxin in refractory
rheumatoid arthritis.
Arthritis Rheum.
1993;
36
1223-33
-
46
Tepler I, Schwartz G, Parker K. et al .
Phase
I trial of an interleukin- 2 fusion toxin (DAB486IL- 2)
in hematologic malignancies: Complete response in a patient with
Hodgkin’s disease refractory to chemotherapy.
Cancer.
1994;
73
1276-85
-
47
LeMaistre C F, Saleh M N, Kuzel T M. et al .
Phase I trial of a ligand fusion-protein
(DAB389IL- 2) in lymphomas expressing the receptor for
interleukin- 2.
Blood.
1998;
91
399-405
-
48 Ullrich R, Schneider T, Schieferdecker H L. et al .Cell activation and proliferation in the
large intestine of patients with Crohn’s disease or ulcerative
colitis and controls. In: Mestecky J, Russell MW, Jackson
S, Michalek SM, Tlaskalová-Hogenová, Sterzl J Plenum
Press New York; 1995: 1281-2
-
49
Stallmach A, Schäfer F, Weber S. et al .
Increased state of activation of CD4-positive
T cells and elevated interferon-γ production in pouchitis.
Gut.
1998;
43
499-505
-
50
MacDonald T T, Hutchings P, Choy M Y, Murch S, Cooke A.
Tumour
necrosis factor-alpha and interferon-gamma production measured at
the single cell level in normal and inflamed human intestine.
Clin
Exp Immunol.
1990;
81
301-5
-
51
Murch S H, Braegger C P, Walker S J, MacDonald T T.
Location
of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory
bowel disease.
Gut.
1993;
34
1705-9
-
52
van D ullemen
HM, van D eventer SJ, Hommes D W. et al .
Treatment of Crohn's disease with anti-tumor
necrosis factor chimeric monoclonal antibody (cA2).
Gastroenterology.
1995;
109
129-35
-
53
Stack W A, Mann S D, Roy A J. et al .
Randomised controlled trial of CDP571 antibody
to tumour necrosis factor-alpha in Crohn's disease.
Lancet.
1997;
349
521-4
-
54
Targan S R, Hanauer S B, van D S. et al .
A short-term study of chimeric monoclonal
antibody cA2 to tumor necrosis factor alpha for Crohn's disease.
Crohn's Disease cA2 Study Group.
N Engl J Med.
1997;
337
1029-35
-
55
Mohler K M, Torrance D S, Smith C A. et al .
Soluble tumor necrosis factor (TNF) receptors
are effective therapeutic agents in lethal endotoxemia and function
simultaneously as both TNF carriers and TNF antagonists.
J
Immunol.
1993;
151
1548-61
-
56
Pender S L, Fell J M, Chamow S M, Ashkenazi A, MacDonald T T.
A p55
TNF receptor immunoadhesin prevents T cell-mediated intestinal injury
by inhibiting matrix metalloproteinase production.
J Immunol.
1998;
160
4098-103
-
57
Edwards C K.
PEGylated
recombinant human soluble tumour necrosis factor receptor type I
(r-Hu-sTNF-RI): Novel high affinity TNF receptor deigned for chronic
inflammatory diseases.
Ann Rheum Dis.
1999;
58
(Suppl 1)
173-81
-
58
Neurath M F, Fuss I, Kelsall B, Meyer z um
Büschenfelde KH, Strober W.
Effect
of IL- 12 and antibodies to IL- 12 on established granulomatous
colitis in mice.
Ann N Y Acad Sci.
1996;
795
368-70
-
59
Groux H, OGara A, Bigler M.
A CD4+ T cell
subset inhibits antigen-specific T-cell response and prevents colitis.
Nature.
1997;
389
737-41
Address for correspondence
Andreas Stallmach, MD
Clinic for Internal Medicine II Saarland University
D-66421 Homburg/Saar, Germany
Fax: 0 49/68 41/16 32 64