Zusammenfassung
In vivo aufgezeichnete Signale des Detrusor Vesicae entziehen sich dem positiven Beweis ihres myogenen Ursprungs, da der Ausschluss aller denkbaren anderen Signalanteile unmöglich ist. Ziel dieser Arbeit war, mittels Algorithmen aus der Sprachverarbeitung und nichtlinearen Dynamik (Chaos-Theorie) zusätzliche Informationen über das zugrundeliegende dynamische System zu gewinnen. Zuvor aufgezeichnete Signale vom Detrusor von 10 Minipigs unter sakraler Vorderwurzelstimulation vor und nach Gabe von Anticholinergika wurden zunächst mit der Wavelet-Transformation (WT) erneut analysiert; nach Attraktorrekonstruktion wurden die Parameter Correlation Dimension (CD, Komplexität), Central Tendency Measure (CTM, Variabilität) und Lyapunov-Exponent (LE, Chaotizität) bestimmt. Hierbei zeigte sich, dass das Signal unter SARS weniger komplex und chaotisch aber variabler erscheint. Unter Anticholinergika sind die Werte für CD und LE etwa doppelt so hoch. Offensichtlich liegt den aufgezeichneten Signalen ein dynamisches System zugrunde, das in spezifischer Weise auf SARS und Anticholinergika reagiert. Während SARS das System ordnet, stören Anticholinergika diese Ordnung. Dies und die gute Korrelation mit dem Blasendruck sind weitere Indizien dafür, dass diese Signale zumindest zum Teil myogenen Ursprungs sind.
Abstract
Signals recorded from the detrusor vesicae in vivo cannot be proven to originate from smooth muscle since the abolition of all possible influences on the signal is impossible. Our objective was to gain additional information about the underlying dynamic system using algorithms from digital speech analysis and nonlinear dynamics. Previously recorded signals from the detrusor in 10 minipigs under sacral anterior root stimulation (SARS), before and after administration of anticholinergics, were re-analyzed with Wavelet-Transformation (WT). After reconstruction of the attractors, correlation dimension (CD, complexity), central tendency measure (CTM, variability) and Lyapunov exponents (LE, chaoticity) were calculated. The signal under SARS appears less complex, less chaotic, but more variable than the native signal. Under the influence of anticholinergics, the base line values for CD and LE are about doubled. The dynamic system generating these signals obviously responds in a characteristic manner to the experimental settings. SARS brings order to the system, whereas this order is disturbed by anticholinergics. This and the correlation with bladder pressure indicate that signals recorded from the urinary bladder are at least in part myogenic and hence a real detrusor EMG.
Key words:
Bladder - Electromyography - Digital signal processing - Nonlinear dynamics
Literatur
1
Boyce W H.
Bladder Electromyography; a new approach to the diagnosis of urinary bladder dysfunction.
J Urol.
1952;
67
650-668
2
Brunsting C D.
An interpretation of the urinary bladder ‘electromyogram’ as artifact.
J Urol.
1958;
79
165-170
3
Cosgrove M D, Jones W, La Joie W J, Kaplan P E, Morrow J W.
Electromyographic studies of human urinary bladder.
Urology.
1974;
3 (2)
239-242
4
Doyle P T, Hill D, Stanton S L.
Electromyography of the detrusor muscle.
J Urol.
1975;
114 (2)
191-206
5
Kaplan P E, Nanninga J B.
Electromyography of the human urinary bladder.
Electromyogr Clin Neurophysiol.
1978;
18 (1)
63-68
6
Craggs M D, Stephenson J D.
The real bladder electromyogram.
Br J Urol.
1976;
48
443-451
7
Craggs M D, Stephenson J D.
Bladder electromyograms and functions in monkeys after atropine.
Br J Urol.
1985;
57 (3)
341-345
8
Jünemann K P, Scheepe J R, Persson Jünemann C, Schmidt P, Abel K, Zwick A, Tschada R, Alken P.
Basic experimental studies on corpus cavernosum electromyography and smooth muscle electromyography of the urinary bladder.
World J Urol.
1994;
12
226-273
9
Scheepe J R, Persson-Jünemann C, Berle B, Greschner M, Jünemann K P, Alken P.
Glattmuskuläre EMG Registrierungen an der intubierten Ratte; erste Erfahrungen.
Akt Urol.
1995;
26
119-123
10
Scheepe J R, Wipfler G, Jünemann K P, Gropp A, Berle B, Alken P.
Electromyographic recordings of the smooth musculature of the urinary bladder.
Euro Urol.
1996;
30 (suppl 2)
92
11
Scheepe J R, Wipfler G, Schumacher S, Bross S, Zendler S, Jünemann K P, Alken P.
Smooth muscle electromyography of the urinary bladder.
Neurourol Urodyn.
1998;
17 (1)
71-83
12
Scheepe J R, Bross S, Schumacher S, Braun P M, Weiss J, Alken P, Jünemann K P.
Recording the evoked canine detrusor electromyogram.
Neurourol Urodyn.
1999;
18 (6)
687-695
13
Weiss J, Scheepe J R, Schumacher S, Bross S, Weber A, Böhler G, Zendler S, Hornero R, Jünemann K P, Alken P.
Das evozierte Detrusor Elektromyogramm; Charakteristik und Analyse.
Akt Urol.
1998;
29 (suppl 1)
27
14
Ursillo R C.
Electrical activity of the isolated nerve urinary bladder strip preparation of the rabbit.
Am J Physiol.
1961;
201
408-412
15
Kinder M V, Gommer E D, van Waalwijk van Doorn E SC, Janknegt R A.
Multi electrode recordings of a clean detrusor electromyogram.
Neurourol Urodyn.
1996;
15
287
16 Thakor N V, Sherman D. Wavelet (time scale) analysis in biomedical signal processing. In: The Biomedical Engineering Handbook Florida: Ed. CRP Press 1995: 886-905
17
Figliola A, Serrano R.
Analysis of physiological time series using wavelet transforms.
IEEE Engineering in Medicine and Biology.
1997;
May/June
74-79
18
Cohen M E, Hudson D L, Deedwania P C.
Applying Continuous Chaotic Modeling to Cardiac Signals.
IEEE Engineering in Medicine and Biology.
1996;
15 (5)
97-102
19
Blanco S, Figliola A, Kochen S, Rosso O A.
Using nonlinear dynamic metric tools for characterizing brain structure.
IEEE Engineering in Medicine and Biology.
1997;
July/August
83-91
20 Hornero R, Alonso A, de Castro J P, López M. Epileptic EEG analysis using wavelet transform. In: Proceedings of the 8th International Conference on Signal Processing Applications and Technology San Diego 1997: 343-347
21 Hornero R, Alonso A, Espino P P, López M. Use of methods from chaos theory to analyze epileptiform activity in the EEG. In: Proceedings of the IASTED International Conference on Signal Processing and Communications Las Palmas de Gran Canarias 1998: 220-223
22
Gabor D.
Theory of Communications.
J of the IEEE.
1946;
93
429-457
23
Rioul O, Vetterli M.
Wavelets and Signal Processing.
IEEE Sp Magazine.
1991;
8 (4)
14-36
24
Graps A.
An Introduction to Wavelets.
IEEE Computational Science and Engineering.
1995;
2 (2)
110-136
25
Grassberger P, Procaccia L.
Characterization of strange attractors.
Physical Review Letters.
1983;
50 (5)
346-349
26
Grassberger P, Procaccia L.
Measuring the strangeness of strange attractors.
Physica D.
1983;
9
189-208
27 Baker G L, Gollub J L. Chaotic dynamics; an introduction. Cambridge University Press 1996
28 Hornero R, Alonso A, Jimeno N, Jimeno A, López M. Use of chaos theory to analyze cognitive dynamic disorders of schizophrenic patients. In: Proceedings of the 18th World Congress on Medical Physics and Biomedical Engineering Nizza 1997: 484
29 Thompson J MT, Steward H B. Nonlinear dynamics and chaos. New York: Ed. John Wiley and Sons 1991
30
Wolf A, Swift J B, Swinney H L, Vastano J A.
Determining Lyapunov exponents from a time series.
Physica D.
1985;
16
285-317
31
Craggs M D, Stephenson J D.
The effects of parasympathetic blocking agents on bladder electromyograms and functions in conscious and anaesthetized cats.
Neuropharmacology.
1982;
27 (1)
695-703
32 Hornero R, Alonso A, Jimeno N, Jimeno A, López M. Estimation of correlation dimension to evaluate cognitive performance in schizophrenic patients using a new computer technique. The Journal of the Society for Chaos Theory in Psychology and Life Sciences. In press
1 Gefördert durch DFG Sche 494/2-1
J Weiss
Urologische Klinik Klinikum
68135 Mannheim
Email: E-mail: joachim.weiss@uro.ma.uni-heidelberg.de