Semin Thromb Hemost 2000; Volume 26(Number 03): 243-254
DOI: 10.1055/s-2000-8469
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Homocysteine, Coagulation, Platelet Function, and Thrombosis

ANTONIO. COPPOLA, GIOVANNI. DAVI, VALENTINO. DE STEFANO, FRANCESCO. P. MANCINI1 , ANNA. MARIA. CERBONE, GIOVANNI. DI MINNO
  • Departments of Clinical and Experimental Medicine, University of Naples ``Federico II,'' Naples, Italy
  • 1Department of Biochemistry and Biomedical Technology, University of Naples ``Federico II,'' Naples, Italy
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Over the last 30 years, a growing body of evidence has documented the role of hyperhomocysteinemia (HHcy) as an independent vascular risk factor. However, the mechanisms through which elevated circulating levels of homocysteine (Hcy) cause vascular injury and promote thrombosis remain elusive. Most findings have been achieved in in vitro studies employing exceedingly high concentrations of Hcy, whereas only a few studies have been carried out in vivo in humans. In homocystinuric patients, homozygotes for mutations of the gene coding for the cystathionine β-synthase enzyme, abnormalities of coagulation variables reflecting a hypercoagulable state, have been reported. In vitro studies provide a biochemical background for such a state. In homocystinuric patients, an in vivo platelet activation has also been reported. The latter abnormality is not corrected by the bolus infusion of concentrations of hirudin, which determines a long-lasting impairment of the conversion of fibrinogen to fibrin by thrombin; in contrast, it appears at least in part lowered by the administration of the antioxidant drug probucol. During the autooxidation of Hcy in plasma, reactive oxygen species are generated. The latter initiate lipid peroxidation in cell membranes (potentially responsible for endothelial dysfunction) and in circulating lipoproteins. Oxidized low-density lipoproteins (LDL) may trigger platelet activation as well as some of the hemostatic abnormalities reported in such patients. Thus the oxidative stress induced by Hcy may be a key process in the pathogenesis of thrombosis in HHcy.

Accumulation of adenosylhomocysteine in cells (a consequence of high circulating levels of homocysteine) inhibits methyltransferase enzymes, in turn preventing repair of aged or damaged cells. This mechanism has been recently documented in patients with renal failure and HHcy and provides an additional direction to be followed to understand the tendency to thrombosis in moderate HHcy.

REFERENCES

  • 1 McCully K S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis.  Am J Pathol . 1969;  56 111-128
  • 2 Boushey C J, Beresford S AA, Omenn G S, Motulsky A G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease.  JAMA . 1995;  274 1049-1057
  • 3 den Heijer M, Rosendaal F R, Blom H J, Gerritz W BJ, Bos G MJ. Hyperhomocysteinemia and venous thrombosis: A meta-analysis.  Thromb Haemost . 1998;  80 874-877
  • 4 Mudd S H, Levy H L. Disorders in transsulfuration. in: Scriver C, Beaudet A, Sly W, Valle D, eds. The Metabolic Basis of Inherited Disease New York: McGraw-Hill 1989: 693-734
  • 5 Kang S S, Wong P WK. Genetic and non-genetic factors for moderate hyperhomocysteinemia.  Atherosclerosis . 1994;  119 135-138
  • 6 Harker L A, Slichter S J, Scott R C, Ross R. Homocysteinemia. Vascular injury and arterial thrombosis.  N Engl J Med . 1974;  291 537-543
  • 7 Harker L A, Ross R, Slichter S J, Scott C R. Homocysteine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis.  J Clin Invest . 1976;  58 731-741
  • 8 Giannini M J, Coleman M, Innerfield I. Antithrombin activity in homocystinuria.  Lancet . 1975;  1 1094
  • 9 Maruyama I, Fukuda R, Kazama M. A case of homocystinuria with low antithrombin activity.  Acta Haematol Jpn . 1977;  40 267-271
  • 10 Palareti G, Salardi S, Piazzi S. Blood coagulation changes in homocystinuria: Effects of pyroxidine and other specific therapy.  J Pediatr . 1986;  109 1001-1006
  • 11 Munnich A, Saudbray J-M, Dautzenberg M-D. Diet-responsive proconvertin (Factor VII) deficiency in homocystinuria.  J Pediatr . 1983;  102 730-734
  • 12 Mercky J, Kuntz F. Deficit en facteur VII et homocystinnurie. Association fortuite ou syndrome?.  Nouv Presse Med . 1981;  10 3796
  • 13 Charlot J C, Haye C, Chaumien J P. Homocystinurie et deficit en facteur VII.  Bull Soc Ophtalmol Fr . 1982;  82 787-789
  • 14 Coppola A, Cerbone A M, Guiotto G. A hypercoagulable state in homocystinuria due to homozygous cystathionine-β-synthase deficiency.  Thromb Haemost . 1997;  528 (528)
  • 15 Ratnoff O D. Activation of Hageman factor by L-homocysteine.  Science . 1968;  162 1007-1009
  • 16 Fryer R H, Wilson B D, Gubler D B, Fitzgerald L A, Rodgers G M. Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells.  Arterioscler Thromb . 1993;  13 1327-1333
  • 17 Nishinaga M, Ozawa T, Shimada K. Homocysteine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells.  J Clin Invest . 1993;  92 1381-1386
  • 18 Rodgers G M, Kane W H. Activation of endogenous factor V by homocysteine-induced vascular endothelial cell activator.  J Clin Invest . 1986;  77 1909-1916
  • 19 Rodgers G M, Conn M T. Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells.  Blood . 1990;  75 895-901
  • 20 Hayashi T, Honda G, Suzuki K. An atherogenic stimulus homocysteine inhibits cofactor activity of thrombomodulin and enhances thrombomodulin expression in human umbilical vein endothelial cells.  Blood . 1992;  79 2930-2936
  • 21 Lentz S R, Sadler J E. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.  J Clin Invest . 1991;  88 1906-1914
  • 22 Hajjar K A. Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor.  J Clin Invest . 1993;  91 2873-2879
  • 23 Harpel P C, Chang V T, Borth W. Homocysteine and other sulfhydryl compounds enhance the binding of lipoprotein(a) to fibrin: A potential biochemical link between thrombosis, atherogenesis and sulfhydryl compound metabolism.  Proc Natl Acad Sci USA . 1992;  89 10193-10197
  • 24 Harker L A, Scott R C. Platelets in homocystinuria.  N Engl J Med . 1977;  296 818
  • 25 Uhlemann E R, Tenpas J H, Lucky A W. Platelets survival and morphology in homocystinuria due to cystathionine-β-synthase.  N Engl J Med . 1976;  295 1283-1286
  • 26 Hill-Zobel R L, Pyeritz R E, Scheffel U. Kinetics and distribution of Indium-labeled platelets in patients with homocystinuria due to cystathionine synthase deficiency.  N Engl J Med . 1982;  307 781-786
  • 27 Graeber J E, Slott J H, Ulane R, Schulman J D, Stuart J J. Effect of homocysteine and homocystine on platelet and vascular arachidonic acid metabolism.  Pediatr Res . 1982;  16 490-493
  • 28 Roberts L J, Sweetman H BJ, Oates J A. Metabolism of thromboxane B2 in man.  Identification of twenty urinary metabolites. J Biol Chem . 1981;  256 8384-8393
  • 29 Patrono C, Davi G, Ciabattoni G. Thromboxane biosynthesis and metabolism in relation to cardiovascular risk factors.  Trends Cardiovasc Med . 1992;  2 15-20
  • 30 Vesterqvist O, Gréen K. Urinary excretion of 2,3-dinor-thromboxane B2 in man under normal conditions, following drugs and during some pathological conditions.  Prostaglandins . 1984;  27 627-644
  • 31 Di Minno G, Davi G, Margaglione M. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism.  J Clin Invest . 1993;  92 1400-1406
  • 32 Ciabattoni G, Maclouf J, Catella F, FitzGerald G A, Patrono C. Radioimmunoassay of 11-dehydro-thromboxane B2 in human plasma and urine.  Biochim Biophys Acta . 1987;  918 293-297
  • 33 Patrignani P, Filabozzi P, Patrono C. Selective, cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects.  J Clin Invest . 1982;  69 1366-1372
  • 34 Glusa E. Hirudin and platelets.  Semin Thromb Hemost . 1991;  17 122-125
  • 35 Markwardt F. The development of hirudin as an antithrombotic drug.  Thromb Res . 1994;  74 1-23
  • 36 Di Minno G, Coppola A, Cerbone A M. Hirudin does not affect the abnormally high thromboxane biosynthesis in homozygous homocystinuria.  Fibrinolysis . 1996;  36 (36)
  • 37 Velury S, Howell S B. Measurement of plasma thiols after derivatization with monobromobimane.  J Chromatogr . 1988;  424 141-146
  • 38 Andersson A, Lindgren A, Hultberg B. Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols from plasma of healthy subjects and patients with cerebral infarction.  Clin Chem . 1995;  41 361-366
  • 39 Misra H P. Generation of superoxide free radical during the autooxidation of thiols.  J Biol Chem . 1974;  249 2151-2155
  • 40 Rowley D A, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds.  FEBS Lett . 1982;  138 33-36
  • 41 Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia.  J Clin Invest . 1996;  98 5-7
  • 42 Heinecke J W, Rosen H, Suzuki L A, Chait A. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells.  J Biol Chem . 1987;  262 10098-10103
  • 43 Ardlie N J, Selley M L, Simons L A. Platelet activation by oxidatively modified low density lipoproteins.  Atherosclerosis . 1989;  76 117-124
  • 44 Parthasarathy S, Young S G, Witzum J L, Pittman R C, Steinberg D. Probucol inhibits oxidative modification of low density lipoproteins.  J Clin Invest . 1986;  77 641-644
  • 45 Starkebaum G, Harlan J M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.  J Clin Invest . 1986;  77 1370-1376
  • 46 Wall R T, Harlan J M, Harker L A, Striker G E. Homocysteine-induced endothelial cell injury in vitro: A model for the study of vascular injury.  Thromb Res . 1980;  18 113-121
  • 47 Blann A D. Endothelial cell damage and homocysteine.  Atherosclerosis . 1992;  94 89-91
  • 48 de Groot P G, Willems C, Boers G HJ. Endothelial cell dysfunction in homocystinuria.  Eur J Clin Invest . 1983;  13 405-410
  • 49 Stamler J S, Osborne J A, Jaraki M. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen.  J Clin Invest . 1993;  91 308-318
  • 50 Liao J K, Shin W S, Lee W Y, Clark S L. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase.  J Biol Chem . 1995;  270 319-324
  • 51 Chin J H, Azhar S, Hoffman B B. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins.  J Clin Invest . 1992;  89 10-18
  • 52 Stamler J S, Simon D I, Osborne J A. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds.  Proc Natl Acad Sci USA . 1992;  89 444-448
  • 53 Wang J, Dudman N PB, Wilken D E. Effects of homocysteine and related compounds on prostacyclin production by cultured human vascular endothelial cells.  Thromb Haemost . 1993;  6 1047-1052
  • 54 Lentz S R, Sobey C G, Piegors D J. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia.  J Clin Invest . 1996;  98 24-29
  • 55 Celermajer D S, Sorensen K, Ryalls M. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents.  J Am Coll Cardiol . 1993;  22 854-858
  • 56 Chambers J C, McGregor A, Jean-Marie J, Obeid O A, Kooner J S. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia.  An effect reversible with vitamin C therapy. Circulation . 1999;  99 1156-1160
  • 57 Tsai J-C, Perrella M A, Yoshizumi M. Promotion of vascular smooth muscle cells growth by homocysteine: A link to atherosclerosis.  Proc Natl Acad Sci USA . 1994;  91 6369-6373
  • 58 Harker L A, Harlan J M, Ross R. Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons.  Circ Res . 1983;  53 731-739
  • 59 Welch G N, Upchurch Jr G R, Farivar R S. Homocysteine-induced nitric oxide production in vascular smooth cells by NF-κB dependent transcriptional activity of Nos2.  Proc Am Assoc Phys . 1998;  110 22-31
  • 60 Bellas R E, Lee J S, Sonenshein G E. Expression of a constitutive NF-kappaB-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells.  J Clin Invest . 1995;  96 2521-2527
  • 61 Perna A, Ingrosso D, Zappia V. Enzymatic methyl esterification of membrane proteins is impaired in chronic renal failure.  Evidence for high levels of the natural inhibitor S. adenosylhomocysteine. J Clin Invest . 1993;  91 2497-2503
  • 62 Patrono C, FitzGerald G A. Isoprostanes: Potential markers of oxidant stress in atherotrombotic disease.  Arterioscl Thromb Vasc Biol . 1997;  17 2309-2315