Thorac Cardiovasc Surg 2000; 48(1): 27-33
DOI: 10.1055/s-2000-8892
Original Cardiovascular
© Georg Thieme Verlag Stuttgart · New York

Acute Triiodothyronine Administration Does Not Reverse Depressed Contractile Performance Following Catecholamine Exposure in Isolated Rat Cardiomyocytes[1]

M. F. Castell, M. Doll, N. Stumpf, C.-F. Vahl, S. Hagl
  • Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Background: It has been previously suggested that triiodothyronine (T3) may reverse depressed cardiac contractile performance occurring affer excessive catecholamine stimulation. We therefore investigated the effects of T3 on intracellular calcium transients and contractile performance in isolated ventricular rat myocytes. Methods: Isolated rat myocytes were loaded with the calcium indicator FURA-2/AM (50 µmol/L) and superfused with Krebs-Henseleit solution (pH 7.4). Cells were illuminated by ultraviolet light and fluorescent images obtained with a target camera at 340 nm and 380 nm excitation wavelengths (ratio method). Simultaneous measurements of calcium transients and cell shortening (35° C, electrical field stimulation: 0.5 Hz) were done. At steady state conditions, FURA-2 loaded myocytes were superfused for 60 min with epinephrine (0.1 µmol/L). After 60 min the effect of T3 (10 µmol/L) on calcium transients and shortening were measured. As control, only the effect of 10 µmol/L T3 was analyzed. Results: Epinephrine significantly increased cell shortening and FURA-2 signals to 148.6 ± 8.8 % and 109.5 ± 3.1 % (p < 0.01: n = 21; 5 min) respectively. With longer epinephrine exposure, the increase in cell shortening continuously declined to 134.6 ± 7.9 % with no change in FURA-2 fluorescence. Acute administration of T3 after epinephrine exposure lowered contractile performance from 136.2 ± 15.5 % to 102 ± 8.2 %, after 10 minutes. In control experiments acute administration of T3 increased basal contractile response from 100 % to 115.8 ± 3.3 % (p < 0.01; n = 8; 5 min). Conclusions: This study confirms previous reports of impaired cardiac function after high catecholamine exposure. High catecholamine exposure is associated with a desensitization of contractile proteins for calcium. Acute T3 administration increased contractility in untreated myocytes, but further depressed myocyte shortening in epinephrine-treated cells. Our results show that T3 is ineffective at restoring myocardial contractility after excessive catecholamine stimulation.

1 Presented in part at the Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, Dresden, February 1999

References

  • 1 Cooper D KC, Novitzky D, Wicomb W N. The pathophysiological effect of brain death on potential donor organs with particular reference to the heart.  Ann R Coll Surg Engl.. 1989;  71 261-6
  • 2 Herijgers P, Borgers M, Flameng W. The effect of brain death on cardiovascular function in rats. Part I and II.  Cardiovasc. Res.. 1998;  38 98-115
  • 3 Herijgers P, Leunens V, Tikma Budya T-M, Kanigula M, Flameng W. Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines.  Transplantation.. 1996;  62 330-5
  • 4 Novitzky D, Wicomb W N, Cooper D KC, Rose A G, Fraser R C, Barnard C N. Electrocardiographic, hemodynamic and endocrine changes ocurring during experimental brain death in the Chacma baboon.  J Heart Transplant.. 1984;  4 63-9
  • 5 Rose A G, Novitzky D, Cooper D KC. Myocardial and pulmonary histopathologic changes.  Transplant Proc.. 1988;  20 29-32
  • 6 Shanlin R J, Sole M J, Rahimifar M, Tator C H, Factor S M. Increased intracranial pressure elicits hypertension, increased sympathetic activity electrocardiographic abnormalities and myocardial damage in rats.  J Am Coll Cardiol.. 1988;  12 727-36
  • 7 Wahlers T, Feiguth H G, Jurmann J. et al . Does hormone depletion of organ donors impair myocardial function after cardiac transplantation?.  Transplant Proc.. 1988;  20 792-4
  • 8 Novitzky D. Heart transplantation, euthyroid sick syndrome, and triiodothyronine replacement.  J Heart Lung Transplant.. 1992;  11 196-8
  • 9 Garcia-Fages L C, Antolin M, Cabrer C, Talbot R, Alcaraz A, Lozano F. et al . Effects of substitutive triiodothyronine therapy on intracellular nucleotide levels in donor organs.  Transplant Proc.. 1991;  23 2495-6
  • 10 Goarin J-P, Cohen S, Riou B, Jacquens Y, Guesde R, Le Bret F, Aurengo A, Coriat P. The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors.  Anesth Analg.. 1996;  83 41-7
  • 11 Jeevanandam V, Todd B, Regillo T, McClurken J, Addonizio V P. Use of triiodothyronine replacement therapy to reverse donor myocardial dysfunction: creating a larger donor pool.  Transplant Proc.. 1993;  25 3305-6
  • 12 Cooper D KC, Novitzky D, Wicomb W N. Hormonal therapy in the brain dead experimental animal.  Transplant Proc.. 1988;  20 (suppl.) 51-4
  • 13 Jeevandandam V, Todd B, Regillo T, Hellman S, Eldridge C, McClurken J. Reversal of donor myocardial dysfunction by triiodothyronine replacement therapy.  J Heart Lung Transplant.. 1994;  13 681-7
  • 14 Meyers Ch, Aico T A, Peterselm D S, Jayawant A M, Steenbergen C, Sabiston D C. et al . Effect of triiodothyronine and vasopressin on cardiac function and myocardial blood flow after brain death.  J Heart Lung Transplant.. 1993;  12 68-80
  • 15 Schwartz I, Bird S, Lotz Z, Innes C R, Hickman R. The influence or thyroid hormone replacement in a porcine brain death model.  Transplantation.. 1993;  55 474-6
  • 16 Dyke C M, Yeh T, Lehman J, And-Elfattah A, Ding M, Wechsler A S. Triiodothyronine - enhanced left ventricular function.  Ann Thorac Surg.. 1993;  56 16-23
  • 17 Novitzky D, Cooper D KC, Rose A G, Reichart B. Prevention of myocardial injury by pretreatment with verapamil hydrochloride prior to experimental brain death.  Am J Emerg Med.. 1987;  5 11-8
  • 18 Pieske B, Schlotthauer K, Schattmann J, Beyersdorf F, Martin J, Just H, Hasenfuß G. Ca2+ dependent and Ca2+- independent regulation of contractility in isolated human myocardium.  Bas Res Cardiol.. 1997;  92 75-86
  • 19 Timek T, Vahl C-F, Bonz A, Schäfferer L, Rosenberg M, Hagl S. Triiodothyronine reverses depressed contractile performance after excessive catecholamine stimulation.  Ann Thorac Surg.. 1998;  66 1618-25
  • 20 Katz M G, Cohen A J, Schwalb H, Segal J, Merin G, Schachner A. Interaction of thyroid hormone and heparin in postischemic myocardial recovery.  Ann Thorac Surg.. 1995;  60 1215-8
  • 21 Davis P J, Davis F B. Acute cellular action of thyroid hormone and myocardial function.  Ann Thorac Surg.. 1993;  56 16-23
  • 22 Segal J. In vivo effect of 3,5,3'-triiodothyronine on calcium uptake in several tissues in the rat: evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane.  Endocrinology.. 1990;  127 17-23
  • 23 Dudley S C, Baumgarten C M. Bursting of cardiac sodium channels after acute exposure to 3,5,3'-triiodo-I-thyronine.  Circ Res.. 1993;  73 301-13
  • 24 Bing O H, Hague N L, Perrault C L, Conrad Ch, Brooks W W, Sen S, Morgan J P. Thyroidhormone effects on intracellular calcium and inotropic responses of rat ventricular myocardium.  Am J Physiol.. 1994;  36 21
  • 25 Rudinger A, Mylotte K M, Davis P J, Davis F B, Blas S D. Rabbit myocyrdial membrane Ca-adenosine triphosphatase activity: Stimulation in vitro by thyroid hormone.  Acc Bioch Bioph.. 1984;  229 379-85
  • 26 Limas C J. Enhanced phosphorylation of myocardial sarcoplasmic reticulum in experimental hyperthyroidism.  Am J Physiol.. 1978;  234 31
  • 27 Kim D, Smith T W. Effects of thyroid hormone on Ca-handling in cultured chick ventricular cells.  J Physiol.. 1985;  364 131-49
  • 28 Snow T R, Deal M, Conelly T S, Yokoyama Y. Acute inotropic response of rabbit papillary muscle to triiodothyronine.  Cardiology.. 1992;  80 112-7
  • 29 Ririe D G, Butterworth J F, Royster R L, Mac Gregor, Zaloga G P. Triiodothyronine increases contractility independent of β-adrenergic receptor stimulation of cyclic 3',5'-adenosine monophosphate.  Anesthesiology. 1995;  82 1004-12
  • 30 Walker J D, Crawford F A, Kato S, Spinale F G. The novel effects of 3,5,3'-triiodo-I-thyronine on myocyte contractile function and β-adrenergic responsiveness in dilated cardiomyopathy.   J Thorac Cardiovasc Surg.. 1994;  108 672-9
  • 31 Terracciano L MN, MacLeod K T. Measurements of Ca2+ entry and sarcoplasmic reticulum Ca2+content during the cardiac cycle in guinea pig and rat ventricular myocytes.  Biophysical Journal.. 1997;  72 1319-26
  • 32 Hussain M, Orchard C H. Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during β-adrenergic stimulation.  Biophysical Journal.. 1997;  72 1319-26

1 Presented in part at the Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, Dresden, February 1999

Dr. M. F. Castell

Chirurgische Klinik Abteilung Herzchirurgie

Im Neuenheimer Feld 110

D-69120 Heidelberg

Germany

Email: Maria_Fernanda.Cas@urz.uni-heidelberg.de