Semin Liver Dis 2000; Volume 20(Number 03): 353-364
DOI: 10.1055/s-2000-9389
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Wilson's Disease

GEORGIOS. LOUDIANOS, JONATHAN. D. GITLIN
  • From the Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Wilson's disease is an autosomal recessive disorder of copper metabolism resulting from the absence or dysfunction of a copper transporting P-type ATPase encoded on chromosome 13. This ATPase is expressed in hepatocytes where it is localized to the trans-Golgi network and transports copper into the secretory pathway for incorporation into ceruloplasmin and excretion into the bile. Under physiologic circumstances, biliary excretion represents the sole mechanism for copper excretion, and thus affected individuals have progressive copper accumulation in the liver. When the capacity for hepatic storage is exceeded, cell death ensues with copper release into the plasma, hemolysis, and tissue deposition. Presentation in childhood may include chronic hepatitis, asymptomatic cirrhosis, or acute liver failure. In young adults, neuropsychiatric symptoms predominate and include dystonia, tremor, personality changes, and cognitive impairments secondary to copper accumulation in the central nervous system. The laboratory diagnosis of Wilson's disease is confirmed by decreased serum ceruloplasmin, increased urinary copper content, and elevated hepatic copper concentration. Molecular genetic analysis is complex as more than 100 unique mutations have been identified and most individuals are compound heterozygotes. Copper chelation with penicillamine is an effective therapy in most patients and hepatic transplantation is curative in individuals presenting with irreversible liver failure. Elucidation of the molecular genetic basis of Wilson's disease has permitted new insights into the mechanisms of cellular copper homeostasis.

REFERENCES

  • 1 Wilson S AK. Progressive lenticular degeneration: A familial nervous disease associated with cirrhosis of the liver.  Brain . 1912;  34 295-507
  • 2 Cummings J N. The copper and iron content of the liver and brain in the normal and hepatolenticular degeneration.  Brain . 1948;  71 410-415
  • 3 Scheinberg I H, Gitlin D. Deficiency of ceruloplasmin in patients with hepatolenticular degeneration.  Science . 1952;  116 484-485
  • 4 Bearn A. A genetical analysis of 30 families with Wilson's disease.  Ann Hum Genet . 1960;  24 33-43
  • 5 Frydman M, Bonne-Tamir B, Farrer LA e t. Assignment of the gene for Wilson's disease to chromosome 13: Linkage to the esterase D locus.  Proc Natl Acad Sci USA . 1985;  82 1819-1821
  • 6 Bull P C, Thomas G R, Rommens J M. The Wilson's disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene.  Nat Genet . 1993;  5 327-337
  • 7 Tanzi R E, Petrukhin K, Chernov I. The Wilson's disease gene is a copper transporting ATPase with homology to the Menkes disease gene.  Nat Genet . 1993;  5 344-350
  • 8 Yamaguchi Y, Heiny M E, Gitlin J D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson's disease.  Biochem Biophys Res Commun . 1993;  197 271-277
  • 9 Askwith C, Kaplan J. Iron and copper in yeast and it's relevance to human disease.  Trends Biochem Sci . 1998;  23 135-138
  • 10 Hirayama T, Kieber J, Hirayama N. Responsive-to-antagonist1, a Menkes/Wilson's disease-related copper transporter, is required for ethylene signaling in Arabidopsis.  Cell . 1999;  97 383-393
  • 11 Rodriguez F, Esch J, Hall A. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis.  Science . 1999;  283 996-998
  • 12 Camakaris J, Voskoboinik I, Mercer J. Molecular mechanisms of copper homeostasis.  Biochem Biophys Res Commum . 1999;  261 225-232
  • 13 Pena M M, Lee J, Thiele D J. A delicate balance: Homeostatic control of copper uptake and distribution.  J Nutr . 1999;  129 1251-1260
  • 14 Cordano A. Clinical manifestations of nutritional copper deficiency in infants and children.  Am J Clin Nutr . 1998;  67 1012S-1016S
  • 15 Valentine J S, Gralla E B. Delivering copper inside yeast and human cells.  Science . 1997;  278 817-818
  • 16 Culotta V C, Lin S J, Schmidt P. Intracellular pathways of copper trafficking in yeast and humans.  Adv Exp Biol Med . 1999;  448 247-254
  • 17 Milne D B. Copper uptake and assessmant of copper status.  Am J Clin Nutr . 1998;  67 1041S-1045S
  • 18 Harris Z L, Takahashi Y, Miyajima H. Aceruloplasminemia: Molecular characterization of this disorder of iron metabolism.  Proc Natl Acad Sci USA . 1995;  92 2539-2534
  • 19 Harris Z L, Durley A P, Man T Z. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux.  Proc Natl Acad Sci USA . 1999;  96 10812-10817
  • 20 Dancis A, Yuan D S, Halle D. Molecular characterization of a copper transport protein in S cerevisiae: An unexpected role for copper in iron transport.   Cell . 1994;  76 393-402
  • 21 Knight S A, Labbe S, Kwon L F. A widespread transposable element masks expression of a yeast copper transport gene.  Genes Dev . 1996;  10 1917-1929
  • 22 Kampfenkel K, Kushnir S, Babiychuk E. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue.  J Biol Chem . 1995;  270 28479-28486
  • 23 Zhou B, Gitschier J. hCTR1: A human gene for copper uptake identified by complementation in yeast.  Proc Natl Acad Sci USA . 1997;  94 7481-7486
  • 24 Labbe S, Pena M M, Fernandes A R. A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe .  J Biol Chem . 1999;  274 36252-36260
  • 25 Arrese N, Ananthananarayanan M, Suchy F. Hepatobiliary transport: Molecular mechanisms of development and cholestasis.  Pediatr Res . 1998;  44 141-147
  • 26 Hung I H, Suzuki M, Yamaguchi Y. Biochemical characterization of the Wilson's disease protein and functional expression in the yeast Saccharomyces cerevisiae.  J Biol Chem . 1997;  272 21461-21466
  • 27 Schaefer M, Hopkins R, Failla M. Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver.  Am J Physiol . 1999;  276 G639-G646
  • 28 Schaefer M, Roelofsen H, Wolters H. Localization of the Wilson's disease protein in human liver.  Gastroenterology . 1999;  117 1380-1385
  • 29 Sato M, Gitlin J D. Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin.  J Biol Chem . 1991;  266 5128-5134
  • 30 Lutsenko S, Kaplan J H. Organization of P-type ATPases-significance of structural diversity.  Biochemistry . 1995;  34 15607-15613
  • 31 Solioz M, Vulpe C. CPx-type ATPases: A class of P-type ATPases that pump heavy metals.  Trends Biochem . 1996;  21 237-241
  • 32 Payne A, Gitlin J D. Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases.  J Biol Chem . 1998;  273 3765-3770
  • 33 Forbes J, Hsi G, Cox D. Role of the copper-binding domain in the copper transporet function of ATP7B, the P-type ATPase defective in Wilson's disease.  J Biol Chem . 1999;  274 12408-12413
  • 34 LaFontaine S L, Firth S D, Camakaris J. Correction of the copper transport defect of Menkes patient fibroblasts by expression of the Menkes and Wilson ATPases.  J Biol Chem . 1998;  273 31375-31380
  • 35 Gitschier J, Moffat B, Reilly D. Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase.  Nat Struct Biol . 1998;  5 47-54
  • 36 Curtis D, Durkie M, Balac P. A study of Wilson's disease mutations in Britain.  Hum Mutat . 1999;  14 304-311
  • 37 Haas R, Gutierrez-Rivero B, Knoche J. Mutation analysis in patients with Wilson's disease: Identification of 4 novel mutations.  Hum Mutat . 1999;  14 88
  • 38 Kalinsky H, Funes A, Zeldin A. Novel ATP7B mutations causing Wilson's disease in several Israeli ethnic groups.  Hum Mutat . 1998;  11 145-51
  • 39 Kim E K, Yoo O J, Song K Y. Identification of three novel mutations and a high frequency of the Arg778Leu mutation in Korean patients with Wilson's disease.  Hum Mutat . 1998;  11 275-278
  • 40 Petrukhin K, Lutsenko S, Chernov L. Characterization of the Wilson's disease gene encoding a P-type copper transporting ATPase: Genomic organization, alternative splicing, and structure/function predicting.  Hum Mol Gen . 1994;  3 1647-1656
  • 41 Loudianos G, Dessi V, Angius A. Wilson's disease mutations associated with uncommon haplotypes in Mediterranean patients.  Hum Genet . 1996;  98 640-642
  • 42 Loudianos G, Dessi V, Lovicu M. Haplotype and mutation analysis in Greek patients with Wilson's disease.  Eur J Hum Genet . 1998;  6 487-491
  • 43 Loudianos G, Dessi V, Lovicu M. Mutation analysis in patients of Mediterranean descent with Wilson's disease: Identification of 19 novel mutations.  J Med Genet . 1999;  36 833-836
  • 44 Nanji M S, Nguyen V T, Kawasoe J H. Haplotype and mutation analysis in Japanese patients with Wilson's disease.  Am J Hum Genet . 1997;  60 1423-1429
  • 45 Shah A B, Chernov I, Zhang H T. Identification and analysis of mutations in the Wilson's disease gene (ATP7B): Population frequencies, genotype-phenotype correlation, and functional analyses.  Am J Hum Genet . 1997;  61 317-328
  • 46 Shimizu N, Kawase C, Nakazono H. A novel RNA splicing mutation in Japanese patients with Wilson's disease.  Biochem Biophys Res Commun . 1995;  217 16-20
  • 47 Thomas G R, Forbes J R, Roberts E A. The Wilson's disease gene: Spectrum of mutations and their consequences.  Nat Genet . 1995;  9 210-217
  • 48 Tsai C H, Tsai F J, Wu J Y. Mutation analysis of Wilson's disease in Taiwan and description of six new mutations.  Hum Mutat . 1998;  12 370-376
  • 49 Waldenstrom E, Lagerkvist A, Dahlman T. Efficient detection of mutations in Wilson's disease by manifold sequencing.  Genomics . 1996;  37 303-309
  • 50 Borjigin J, Payne A S, Deng J. A novel pineal night-specific ATPase encoded by the Wilson's disease gene.  J Neurosci . 1999;  19 1018-1026
  • 51 Vulpe C, Levinson B, Whitney S. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase.  Nat Genet . 1993;  3 7-13
  • 52 Chelly J, Tumer Z, Tonnesen T. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein.  Nat Genet . 1993;  3 14-19
  • 53 Mercer J, Livingston J, Hall B. Isolation of a partial candidate gene for Menkes disease by positional cloning.  Nat Genet . 1993;  3 20-25
  • 54 Tumer Z, Horn N. Menkes disease: Underlying genetic defect and new diagnostic possibilities.  J Inherit Metab Dis . 1998;  21 604-612
  • 55 Kaler S G. Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency.  Am J Clin Nutr . 1998;  67 1029S-1034S
  • 56 Schaefer M, Gitlin J D. Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease.  Am J Physiol . 1999;  276 G311-G314
  • 57 Rae T, Schmidt P, Pufahl R,et. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutast.  Science . 1999;  284 805-808
  • 58 Lin S J, Culotta V C. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity.  Proc Natl Acad Sci USA . 1995;  92 3784-3788
  • 59 Lin S-J, Pufahl R A, Dancis A. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport.  J Biol Chem . 1997;  272 9215-9220
  • 60 Klomp L WJ, Lin S-J, Yuan D S. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis.  J Biol Chem . 1997;  272 9221-9226
  • 61 Hamza I, Klomp L WJ, Gaedigk R. Structure, expression and chromosomal localization of the Mouse Atox1 gene.  Genomics . 2000;  63 294-297
  • 62 Hung I H, Casareno R L, Labesse G. HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense.  J Biol Chem . 1998;  273 1749-1754
  • 63 Rosenzweig A C, Huffman D L, Hou M Y. Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution.  Struct Fold Des . 1999;  7 605-617
  • 64 Pufahl R A, Singer C P, Peariso K L. Metal ion chaperone function of the soluble Cu(I) receptor, Atx1.  Science . 1997;  278 853-856
  • 65 Larin D, Mekios C, Das K. Characterization of the interaction between the Wilson's and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p.  J Biol Chem . 1999;  274 28497-28504
  • 66 Hamza I, Schaefer M, Klomp L W. Interaction of the copper chaperone HAH1 with the Wilson's disease protein is essential for copper homeostasis.  Proc Natl Acad Sci USA . 1999;  96 13363-13368
  • 67 Forbes J R, Cox D W. Functional characterization of missense mutations in ATP7B: Wilson's disease mutation or normal variant?.  Am J Hum Genet . 1998;  63 1663-1674
  • 68 Payne A S, Kelly E J, Gitlin J D. Functional expression of the Wilson's disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation.  Proc Natl Acad Sci USA . 1998;  95 10854-10859
  • 69 Francis M, Jones E, Levy E. Identification of a di-leucine motif within the C terminus domain ofthe menkes disease protein that mediates endocytosis from the plasma membrane.  J Cell Sci . 1999;  112 1721-1732
  • 70 Petris M J, Mercer J F. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal.  Hum Mol Genet . 1999;  8 2107-2115
  • 71 Loudianos G, Dessi V, Lovicu M. Further delineation of the molecular pathology of Wilson's disease in the Mediterranean population.  Hum Mutat . 1998;  12 89-94
  • 72 Cuthbert J A. Wilson's disease: Update on a systemic disorder with protean manifestations.  Gastroent Clin North Amer . 1998;  27 655-682
  • 73 Gaxiola R A, Yuan D S, Klausner R D. The yeast CLC chloride channel functions in cation homeostasis.  Proc Natl Acad Sci USA . 1998;  95 4046-4050
  • 74 Davis-Kaplan S R, Askwith C C, Bengtzen A C. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase fet3p: An unexpected role for intracellular chloride channels.  Proc Natl Acad Sci USA . 1998;  95 13641-13645
  • 75 Pyeritz R E. Genetic heterogeneity in Wilson's disease: Lessons from rare alleles.  Ann Intern Med . 1997;  127 70-72
  • 76 Rauch H. The toxic milk, a new mutation affecting copper metabolism in the mouse.  J Hered . 1983;  74 141-144
  • 77 Theophilos M B, Cox D W, Mercer J F. The toxic milk mouse is a murine model of Wilson's disease.  Hum Mol Genet . 1996;  5 1619-1624
  • 78 Buiakova O I, Xu J, Lutsenko S. Null mutation of the murine ATP7B (Wilson's disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation.  Hum Mol Genet . 1999;  8 1665-1671
  • 79 Wu J, Forbes J R, Chen H S. The LEC rat has a deletion in the copper transporting ATPase genehomologous to the Wilson's disease gene.  Nat Genet . 1994;  7 541-545
  • 80 Li Y, Togahsi Y, Sato S. Spontaneous hepatic copper accumulation in Long Evans Cinnamon rats with hereditary hepatitis. A model of Wilson's disease.  J Clin Invest . 1991;  87 1858-1861
  • 81 Terada K, Nakako T, Yang X-L. Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA.  J Biol Chem . 1998;  273 1815-1820
  • 82 Terada K, Aiba N, Yang X. Biliary excretion of copper in LEC rat after introduction ofcopper transporting P-type ATPase, ATP7B.  FEBS Lett . 1999;  448 53-56
  • 83 Kato J, Kobune M, Kohgo Y. Hepatic iron deprivation prevents spontaneous development of fulminat hepatitis and liver cancer in Long Evans Cinnamon rats.  J Clin Invest . 1996;  98 923-929
  • 84 Schilsky M. Wilson disease: Genetic basis of copper toxicity and natural history.  Semin Liver Dis . 1996;  16 83-95
  • 85 Morrison E D, Kowdley K V. Genetic liver disease in adults. Early recognition of the three most common causes.  Postgrad Med. 2000;  107 147-152, 155, 158-159
  • 86 Gow P J, Smallwood R A, Angus P W. Diagnosis of Wilson's disease: An experience over three decades.  Gut . 2000;  46 415-419
  • 87 Cuthbert J A. Wilson's disease: A new gene and an animal model for an old disease.  J Invest Med . 1995;  43 323-326
  • 88 Walshe J M. Wilson's disease presenting with features of hepatic dysfunction: A clinical analysis of eighty-seven patients.  Q J Med . 1989;  70 253-263
  • 89 Schilsky M L, Scheinberg I H, Sternlieb I. Liver transplantation for Wilson's disease: Indications and outcome.  Hepatology . 1994;  19 583-587
  • 90 Davies S E, Williams R, Portmann B. Hepatic morphology and histochemistry of Wilson's disease presenting as fulminant hepatic failure: A study of 11 cases.  Histopathology . 1989;  15 385-394
  • 91 Oder W, Grimm G, Kollegger H. Neurologic and neuropsychiatric spectrum of Wilson's disease: A prospective study of 45 cases.  J Neurol . 1991;  238 281-287
  • 92 Alanen A, Komu M, Penttinen M. Magnetic resonance imaging and proton MR spectroscopy in Wilson's disease.  Br J Radiol . 1999;  72 749-756
  • 93 Dening T R, Berrios G E. Wilson's disease: Psychiatric symptoms in 195 cases.  Arch Gen Psychiatry . 1989;  46 1126-1134
  • 94 Steindl P, Ferenci P, Dienes H P. Wilson's disease in patients presenting with liver disease: A diagnostic challenge.  Gastroenterology . 1997;  113 212-218
  • 95 Schilsky M L, Sternlieb I. Overcoming obstacles to the diagnosis of Wilson's disease.  Gastroenterology . 1997;  113 350-353
  • 96 Pandit A, Bhave S. Present interpretation of the role of copper in Indian childhood cirrhosis.  Am J Clin Nutr . 1996;  63 830S-835S
  • 97 Muller T, Feichtinger H, Berger H. Endemic Tyrolean infantile cirrhosis: An ecogenetic disorder.  Lancet . 1996;  347 877-880
  • 98 Gitlin J D. Aceruloplasminemia.  Pediatr Res . 1998;  44 271-276
  • 99 Maier-Dobersberger T, Ferenci P, Polli C. Detection of the His1069Gln mutation in Wilson's disease by rapid polymerase chain reaction.  Ann Intern Med . 1997;  127 21-26
  • 100 Cox D W. Molecular advances in Wilson's disease.  Prog Liver Dis . 1996;  14 245-264
  • 101 Takahashi W, Yoshii F, Shinohara Y. Reversible magnetic resonance imaging lesions in Wilson's disease: Clinical-anatomical correlation.  J Neuroimag . 1996;  6 246-248
  • 102 Scheinberg I H, Jaffe M E, Sternlieb I. The use of trientine in preventing the effects of interrupting penicillamine therapy in Wilson's disease.  N Engl J Med . 1987;  317 209-213
  • 103 Walshe J M. Treatment of Wilson's disease with trientine (triethylene tetramine).  Lancet . 1982;  1 643-647
  • 104 Sternlieb I. Wilson's disease and pregnancy.  Hepatology . 2000;  31 531-532
  • 105 Schumacher G, Platz K P, Mueller A R. Liver transplantation: Treatment of choice for hepatic and neurological manifestation of Wilson's disease.  Clin Transplant . 1997;  11 217-224
  • 106 Asonuma K, Inomata Y, Kasahara M. Living related liver transplantation from heterozygote genetic carriers to children with Wilson's disease.  Pediatr Transplant . 1999;  3 201-205