Semin Respir Crit Care Med 2000; 21(4): 323-330
DOI: 10.1055/s-2000-9856
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Therapeutic Considerations in the Treatment of Respiratory Infections Caused by Ceftazidime-Resistant Klebsiella Pneumoniae

Louis B. Rice
  • VA Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Klebsiella pneumoniae are important human pathogens, particularly as causes of nosocomial respiratory tract infections. Intrinsically resistant to ampicillin, in recent years K. pneumoniae strains have acquired resistance to a broad variety of extended-spectrum cephalosporins. This resistance is most commonly mediated by the extended-spectrum β-lactamases (ESBLs), plasmid-mediated enzymes that have evolved through point mutations in the genes encoding the more susceptible penicillinases TEM-1 and SHV-1. In a small minority of cases, K. pneumoniae have also been found to express extended-spectrum cephalosporin resistance by the elaboration of plasmid-mediated AmpC-type enzymes. These mutant enzymes confer resistance to extended-spectrum cephalosporins, penicillins, and in some cases cefamycins or β-lactam-β-lactamase inhibitor combinations. The most reliable and effective antimicrobial treatment of infections caused by these strains are the carbapenems imipenem and meropenem.

REFERENCES

  • 1 Emori T G, Gaynes R P. An overview of nosocomial infections, including the role of the microbiology laboratory.  Clin Microbiol Rev . 1993;  6 428-442
  • 2 Bates J H, Campbell G D, Barron A L. Microbial etiology of acute pneumonia in hospitalized patients.  Chest . 1992;  101 1005-1012
  • 3 Fang G-D, Fine M, Orloff J. New and emerging etiologies for community-acquired pneumonia with implications for therapy: A prospective multicenter study of 359 cases.  Medicine (Baltimore) . 1990;  69 307-316
  • 4 Marrie T M, Durant H, Yates L. Community-acquired pneumonia requiring hospitalization: 5-year prospective study.  Rev Infect Dis . 1989;  11 586-599
  • 5 Ishida T, Hashimoto T, Arita M, Ito I, Osawa M. Etiology of community-acquired pneumonia in hospitalized patients: A 3-year prospective study in Japan.  Chest . 1998;  114 1588-1593
  • 6 Potgeiter P D, Hammond J MJ. Etiology and diagnosis of pneumonia requiring ICU admission.  Chest . 1992;  101
  • 7 Schaberg D R, Culver D H, Gaynes R P. Major trends in the microbial etiology of nosocomial infection.  Am J Med . 1991;  91 72S-75S
  • 8 Korvick J A, Hackett A K, Yu V L. Klebsiella pneumonia in the modern era: Clinicoradiographic correlations.  South Med J . 1991;  84 200-204
  • 9 Jong G-M, Hsiue T-R, Chen C-R, Chang H-Y, Chen C-W. Rapidly fatal outcome of bacteremic Klebsiella pneumoniae pneumonia in alcoholics.  Chest . 1995;  107 214-217
  • 10 Hirshberg B, Sklair-Levi M, Nir-Paz R, Ben-Sira L, Krivoruk V, Kramer M R. Factors predicting mortality of patients with lung abscess.  Chest . 1999;  115 746-750
  • 11 Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors.  Clin Microbiol Rev . 1998;  11 589-603
  • 12 Ambler R P, Coulson A FW, Frère J M. A standard numbering scheme for the class A β-lactamases.  Biochem J . 1991;  276 269-272
  • 13 Arakawa Y, Ohta M, Kido N, Fujii Y, Komatsu T, Kato N. Close evolutionary relationship between the chromosomally encoded β-lactamase gene of Klebsiella pneumoniae and the TEM β-lactamase gene mediated by R plasmids.  FEBS Lett . 1986;  207 69-74
  • 14 Leung M, Shannon K, French G. Rarity of transferable β-lactamase production by Klebsiella species.  J Antimicrob Chemother . 1997;  39 737-745
  • 15 Medeiros A A, Jacoby G A. Beta-lactamase-mediated resistance. In: Queener SW, Queener SF, Webber JA, eds. Beta-lactam Antibiotics for Clinical Use New York: Marcel Dekker 1986: 49-84
  • 15b Rice L B, Carias L L, Hujer A M. High-level expression of chromosomally encoded SHV-1 β-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae Antimicrob Agents Chemother .  2000;  44 362-367
  • 16 Bradford P A, Urban C, Mariano N, Projan S J, Rahal J J, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the loss of an outer membrane protein.  Antimicrob Agents Chemother . 1997;  41 563-569
  • 17 Pangon B, Bizet C, Bure A. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3-lactamase.  J Infect Dis . 1989;  159 1005-1006
  • 18 Rice L B, Carias L L, Etter L, Shlaes D M. Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae: Evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms.  Antimicrob Agents Chemother . 1993;  37 1061-1064
  • 19 Chen S-T, Clowes R C. Two improved promoter sequences for the β-lactamase expression arising from a single base-pair substitution.  Nucleic Acids Res . 1984;  12 3219-3235
  • 20 Goussard S, Courvalin P. Updated sequence information for TEM β-lactamase genes.  Antimicrob Agents Chemother . 1999;  43 367-370
  • 21 Rasheed J K, Jay C, Metchock B. Evolution of extended-spectrum β-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia.  Antimicrob Agents Chemother . 1997;  41 647-653
  • 22 Jacoby G A, Medeiros A A. More extended-spectrum β-lactamases.  Antimicrob Agents Chemother . 1991;  35 1697-1704
  • 23 Jacoby G A, Han P. Detection of extended-spectrum β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli J Clin Microbiol .  1996;  34 908-911
  • 24 Rice L B, Yao J DC, Klimm K, Eliopoulos G M, Moellering Jr C R. Efficacy of different β-lactams against an extended spectrum β-lactamase-producing Klebsiella pneumoniae strain in the rat intra-abdominal abscess model.  Antimicrob Agents Chemother . 1991;  35 1243-1244
  • 25 Thauvin-Eliopoulos C T, Tripodi M-F, Moellering Jr C R, Eliopoulos G M. Efficacies of piperacillin/tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum β-lactamase-producing strain of Klebsiella pneumoniae Antimicrob Agents Chemother .  1997;  41 1053-1057
  • 26 Brun-Brisson C, Legrand P, Philippon A, Montravers F, Ansquer M, Duval J. Transferable enzymatic resistance to third generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae Lancet .  1987;  302-306
  • 27 Karas J A, Pillay D G, Muckart D, Sturm A W. Treatment failure due to extended-spectrum β-lactamase.  J Antimicro Chemother . 1996;  37 203-204
  • 28 Jett B D, Ritchie D J, Reichley R, Bailey T C, Sahm D F. In vitro activities of various β-lactam antimicrobial agents against clinical isolates of Escherichia coli and Klebsiella spp. resistant to oxyimino cephalosporins.  Antimicrob Agents Chemother . 1995;  39 1187-1190
  • 29 Rice L B, Carias L L, Bonomo R A, Shlaes D M. Molecular genetics of resistance to both ceftazidime and β-lactam-β-lactamase inhibitor combinations in Klebsiella pneumoniae and in vivo response to β-lactam therapy.  J Infect Dis . 1996;  173 151-158
  • 30 Ahmad M, Urban C, Mariano N. Clinical characteristics and molecular epidemiology associated with imipenem-resistant Klebsiella pneumoniae Clin Infect Dis .  1999;  29 352-355
  • 31 Sanders W EJ, Sanders C C. Inducible β-lactamases: Clinical and epidemiologic implications for use of newer cephalosporins.  Rev Infect Dis . 1988;  10 830-838
  • 32 Jacobs C, Frere J-M, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria.  Cell . 1997;  88 823-832
  • 33 Sanders C C. Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics.  Annu Rev Microbiol . 1987;  41 573-593
  • 34 Livermore D M. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa Antimicrob Agents Chemother .  1992;  36 2046-2048
  • 35 Chow J W, Shlaes D M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes J Antimicrob Chemother .  1991;  28 499-504
  • 36 Papanicolaou G A, Medeiros A A, Jacoby G A. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae Antimicrob Agents Chemother .  1990;  34 2200-2209
  • 37 Chow J W, Fine M J, Shlaes D M, Quinn J P. Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy.  Ann Intern Med . 1991;  115 585-590
  • 38 Lucet J-C, Chevret S, Decre D. Outbreak of multiply resistant Enterobacteriaceae in an intensive care unit: Epidemiology and risk factors for acquisition.  Clin Infect Dis . 1996;  22 430-436
  • 39 Peña C, Pujol M, Ricart A. Risk factors for faecal carriage of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL-KP) in the intensive care unit.  J Hosp Infect . 1997;  35 9-16
  • 40 Rice L B, Willey S H, Papanicolaou G A. Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic care facility.  Antimicrob Agents Chemother . 1990;  34 2193-2199
  • 41 Schiappa D A, Hayden M K, Matushek M G. Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: A case-control and molecular epidemiologic investigation.  J Infect Dis . 1996;  174 529-536
  • 42 Rice L B, Carias L L, Shlaes D M. In vivo efficacies of β-lactam-β-lactamase inhibitor combinations against a TEM-26-producing strain of Klebsiella pneumoniae Antimicrob Agents Chemother .  1994;  38 2663-2664
  • 43 Rice L B, Carias L L, Shlaes D M. Efficacy of ampicillin-sulbactam versus that of cefoxitin for treatment of Escherichia coli infections in a rat intra-abdominal abscess model.  Antimicrob Agents Chemother . 1993;  37 610-612
  • 44 Go E S, Urban C, Burns J. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymixin B and sulbactam.  Lancet . 1994;  344(8933) 1329-1332
  • 45 Rice L B, Eckstein E C, DeVente J, Shlaes D M. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center.  Clin Infect Dis . 1996;  23 118-124
  • 46 Peña C, Pujol M, Ardanuy C. Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum β-lactamases.  Antimicrob Agents Chemother . 1998;  42 53-58
  • 47 Landman D, Chockalingham M, Quale J M. Reduction in the incidence of methicillin-resistant Staphylococcus aureus and ceftazidime-resistant Klebsiella pneumoniae following changes in a hospital formulary.  Clin Infect Dis . 1999;  28 1062-1066