Int J Sports Med 2001; 22(1): 27-33
DOI: 10.1055/s-2001-11357
Training and Testing
Georg Thieme Verlag Stuttgart · New York

Relationship Between Run Times to Exhaustion at 90, 100, 120, and 140 % of vV˙O2max and Velocity Expressed Relatively to Critical Velocity and Maximal Velocity

N. Blondel1, 2 ,  S. Berthoin1 ,  V. Billat1 ,  G. Lensel1
  • 1 Laboratoire d'Etudes de la Motricité Humaine (LEMH), Faculté des Sciences du Sport et de l'Education Physique, Université de Lille 2, France
  • 2 Laboratoire d'Analyse Multidisciplinaire des Activités Physiques et Sportives (LAMAPS), UFRSTAPS de Liévin, Université d'Artois, France
Further Information

Publication History

Publication Date:
31 December 2001 (online)

The aim of the present study was to explain the inter-individual variability in running time to exhaustion (tlim) when running speed was expressed as a percentage of the velocity, associated with maximal oxygen uptake (vV˙O2max). Indeed for the same percentage of vV˙O2max the anaerobic contribution to energy supply is different and could be dependent on the critical velocity (Cv) and also on the maximal running velocity (vmax). Ten subjects ran four tlim at 90, 100, 120, and 140 % of vV˙O2max; mean and standard deviation for tlim were 839 ± 236 s, 357 ± 110 s, 122 ± 27 s, and 65 ± 17s, respectively. Each velocity was then expressed 1) as a percentage of the difference between vV˙O2max and Cv (%AeSR); 2) as a percentage of the difference between vmax and Cv (%MSR); 3) as a percentage of the difference between vmax and vV˙O2max (%AnSR). Highest correlations were found between tlim90 and tlim100 and velocity expressed as %MSR (r = - 0.82, p < 0.01 and r = - 0.75, p < 0.01), and between tlim120 and tlim140 and velocity expressed as %AnSR (r = -0 .83, p < 0.01 and r = - 0.94, p < 0.001). These results show that the same intensity relative to aerobic contribution did not represent the same absolute intensity for all and could partly explain variability in tlim. Therefore expressing intensity as a percentage of MSR for sub-maximal and maximal velocities and as a percentage of AnSR for supra-maximal velocities allows individual differences in anaerobic work capacity to be taken into account and running times to exhaustion to be predicted accurately.

References

  • 1 Barnett C, Jenkins D, MacKinnon L, Green S. A new method for calculation of constant supra-power outputs.  Med Sci Sports Exerc. 1996;  28 1505-1509
  • 2 Bigard A X, Guezennec C Y. Evaluation of the Cosmed K2 telemetry system during exercise at moderate altitude.  Med Sci Sports Exerc. 1995;  27 1333-1338
  • 3 Billat V, Koralsztein J P. Significance of the velocity at V˙O2max and time to exhaustion at this velocity.  Sports Med. 1996;  22 90-108
  • 4 Billat V, Petit B, Koralsztein J P. Calibration de la durée des répétitions d'une séance d'interval training à la vitesse associée à V˙O2max en référence au temps limite continu.  Science et motricité. 1996;  28 13-20
  • 5 Billat V, Binsse V, Petit B, Koralsztein J P. High level runners are able to maintain a steady-state V˙O2 below V˙O2max in all-out run over their critical velocity.  Arch Int Physiol Biochem. 1998;  106 38-45
  • 6 Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J P. Times to exhaustion at 100 % of velocity at V˙O2max and modelling of the time-limit/velocity relationship in elite long-distance runners.  Eur J Appl Physiol. 1994;  69 271-273
  • 7 Camus G, Juchmes J, Thys H, Fossion A. Relationship between endurance time and maximum oxygen consumption in supramaximal running.  J Physiol. 1988;  83 26-31
  • 8 Daniels J, Scardina N, Hayes J, Foley P. Elite and subelite female middle- and long-distance runners. In: Landers DM (ed) Sport and Elite Performers. Champaign, IL; Human Kinetics 1984: 57-72
  • 9 Ettema J H. Limits of human peformance and energy-production.  Int J Physiol Arbeitsphysiol. 1966;  22 45-54
  • 10 Hill D W, Rowell A L. Significance of time to exhaustion during exercise at the velocity associated with V˙O2max.  Eur J Appl Physiol. 1996;  72 383-386
  • 11 Kachouri K, Vandewalle H, Huet M, Thomaïdis M, Jousselin E, Monod H. Is the exhaustion time at maximal aerobic speed an index of aerobic endurance?.  Arch Int Physiol Biochem. 1996;  104 330-306
  • 12 Kachouri K, Vandewalle H, Billat V, Huet M, Thomaïdis M, Jousselin E, Monod H. Critical velocity of continuous and intermittent running exercise.  Eur J Appl Physiol. 1996;  73 484-487
  • 13 Lacour J R, Padilla-Magunacelaya S, Chatard J C, Arsac L, Barthélémy J C. Assessment of running velocity at maximal oxygen uptake.  Eur J Appl Physiol. 1991;  62 77-82
  • 14 Lucia A, Fleck S J, Gotshall R W, Kearney T J. Validity and reliability of the Cosmed K2 instrument.  Int J Sports Med. 1993;  14 380-386
  • 15 MacLellan T M, Cheung S S, Jacobs I. Variability of time to exhaustion during submaximal velocity.  Can J Appl Physiol. 1995;  20 39-51
  • 16 Marais G, Weissland T, Robin H, Vanvelcenaher J M, Lavoie J M, Pelayo P. Physiological effects of variations in spontaneously chosen crank rate during sub-maximal and supra-maximal upper body exercise.  Int J Sports Med. 1999;  20 239-245
  • 17 Medbø J I, Mohn A C, Tabata I, Baht R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 18 Morton R H. A 3-parameter critical power model.  Ergonomics. 1996;  39 611-619
  • 19 Padilla S, Bourdin M, Barthélémy J C, Lacour J R. Physiological correlates of middle-distance running performance.  Eur J Appl Physiol. 1992;  62 561-566

S. Berthoin

Laboratoire d'Etudes de la Motricité HumaineFaculté des Sciences du Sport et de l'Education Physique

9, rue de l'Université59790 RonchinFrance

Phone: Phone:+ 33 (320) 887366

Fax: Fax:+ 33 (320) 887363

Email: E-mail:berthoin@hp-sc.univ-lille2.fr