Semin Musculoskelet Radiol 2001; 05(1): 035-042
DOI: 10.1055/s-2001-12921
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Diffusion-weighted Magnetic Resonance Imaging of Spinal Bone Marrow

Andrea Baur, Axel Stäbler, Armin Huber, Maximilian Reiser
  • Department of Diagnostic Radiology, University of Munich, Munich, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Diffusion-weighted (DW) imaging is an alternative source of image contrast. DW imaging enables to measure the random motion of free water protons on a molecular basis by using different imaging sequences including steady-state free precession imaging, navigated spin-echo DW imaging, and single-shot echo planar imaging. Analysis of intravoxel incoherent motion of water protons is a promising tool that has shown to be of value in the differential diagnosis between benign and malignant spontaneous vertebral fractures. Acute benign osteoporotic fractures show hypo- or isointense signal on DW sequences that reflects persistent free water proton mobility. With increasing diffusion strength a substantial signal loss is found. Metastatic fractures show hyperintensity compared with normal surrounding bone marrow probably due to altered water proton mobility within neoplasm. The ability of the different methods for DW imaging to differentiate other bone marrow alterations needs to be investigated in further studies.

REFERENCES

  • 1 Hahn E L. Spin echoes.  Physiol Rev . 1950;  80 580-594
  • 2 Stejskal E O, Tanner J E. Spin diffusion measurement: spin echoes in the presence of a time dependent field gradient.  J Chem Phys . 1965;  42 288-292
  • 3 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.  Radiology . 1986;  161 401-407
  • 4 Hajnal J V, Doran M, Hall A S. MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic and pathologic considerations.  J Comput Assist Tomogr . 1991;  15 1-18
  • 5 Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR imaging: clinical applications.  Am J Roentgenol . 1992;  159 591-599
  • 6 Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R R. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging.  Ann Neurol . 1995;  37 231-241
  • 7 Chien D, Kwong K K, Gress D R, Buonanno F S, Buxton R B, Rosen B R. MR diffusion imaging of cerebral infarction in humans.  Am J Neuroradiol . 1992;  13 1097-1102
  • 8 Mintorovitch J, Moseley M E, Chileuitt L, Shimizu H, Cohen P, Weinstein P R. Comparison of diffusion and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats.  Magn Res Med . 1991;  18 39-50
  • 9 Benveniste H, Hedlund L W, Johnson G A. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy.  Stroke . 1992;  23 746-754
  • 10 Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging.  Radiology . 1999;  210 617-623
  • 11 Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging.  Radiology . 1997;  204 739-744
  • 12 Turner R, Le Bihan D, Maier J, Vavrek R, Hedges L K, Pekar J. Echo-planar imaging of intravoxel incoherent motions.  Radiology . 1990;  177 407-414
  • 13 Buxton R B. The diffusion sensitivity of fast steady-state free precession imaging.  Magn Reson Imaging . 1993;  29 235-243
  • 14 Deimling M, Heid O. High resolution SSFP diffusion imaging (abstr.) In: Proceedings of the Second Meeting of the Society of Magnetic Resonance Berkeley, CA: 1994: 1033
  • 15 Lang P, Wendland M F, Saeed M. Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging.  Radiology . 1998;  206 227-235
  • 16 Karczmar G S, River J N, Goldman Z. Magnetic resonance imaging of rodent tumors using radiofrequency gradient echoes.  Magn Reson Med . 1994;  12 881-893
  • 17 Maier C F, Paran Y, Bendel P, Rutt B K, Degani H. Quantitative diffusion imaging in implanted human breast tumors.  Magn Reson Med . 1997;  37 576-581
  • 18 Baur A, Stäbler A, Brüning R. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic vertebral compression fractures.  Radiology . 1998;  207 349-356
  • 19 Spüntrup E, Adam G, Buecker A, Günther R W. Navigated spin echo and stimulated echo diffusion-weighted imaging of the spine: potential for differentiation of benign and malignant bone marrow edema (abstr.) In: Book of Abstracts: Society of Magnetic Resonance in Medicine Sydney, Australia: 1999: 561
  • 20 Nakagawa K, Sakuma H, Ichikawa Y. Vertebral compression fractures: differentiation between benign and malignant lesions with diffusion-weighted single-shot echo planar MR imaging.  Eur Radiol . 2000;  10 154
  • 21 Yuh W TC, Zachar C K, Barloon T J, Sato Y, Sickels W J, Hawes D R. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging.  Radiology . 1989;  172 215-218
  • 22 Baker L L, Goodman S B, Perkash I, Lane B, Enzmann D R. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical shift, and STIR MR imaging.  Radiology . 1990;  174 495-502
  • 23 Baur A. Diffusion-weighted imaging of bone marrow: Differentiation of benign and malignant compression fractures. In: Book of Abstracts: American Society of Neuroradiology San Diego, CA: 1999: 206
  • 24 Baur A, Huber A, Ertl-Wagner B. Diagnostic value of increased diffusion-weighting of a steady-state free precession sequence for the differentiation of acute benign osteoporotic versus pathologic vertebral compression fractures.  Submitted to AJNR..