Subscribe to RSS
DOI: 10.1055/s-2001-13393
Enzymatic Reduction of Hydrophobic β,δ-Diketo Esters
Publication History
Publication Date:
24 September 2004 (online)
Abstract
The regio- and enantioselective reduction of two hydrophobic β,δ-diketo esters is presented. Enzymatic reduction of racemic tert-butyl 4-methyl-3,5-dioxohexanoate (rac-1) with alcohol dehydrogenase from Lactobacillus brevis (recLBADH) gave δ-hydroxy-β-keto ester syn-(4S,5R)-4 under dynamic kinetic resolution conditions (99.2% ee, syn:anti = 97:3, 66% isolated yield). The highly lipophilic tert-butyl-3,5-dioxoheptanoate (2) was reduced with the same sense of enantio- and regioselectivity by recLBADH. A biphasic system was applied in this case. The product, δ-hydroxy-β-keto ester (R)-9 (98.5% ee, 66% isolated yield), was converted into (R)-6-ethyl-5,6-dihydropyran-2-one [(R)-10], which is a naturally occurring fragrance.
Key words
stereoselective synthesis - asymmetric catalysis - natural products - lactones - enzymatic reduction
- 1
Wolberg M.Hummel W.Wandrey C.Müller M. Angew. Chem., Int. Ed. 2000, 39: 4306 -
2a
Blandin V.Carpentier J.-F.Mortreux A. Eur. J. Org. Chem. 1999, 3421 -
2b
Shao L.Kawano H.Saburi M.Uchida Y. Tetrahedron 1993, 49: 1997 -
2c
Sayo N,Saito T,Kumobayashi H,Akutagawa S,Noyori R, andTakaya H. inventors; (Takasago International Corp.), Eur. Patent Appl. EP 297,752. - 3
Ji A.Wolberg M.Hummel W.Wandrey C.Müller M. Chem. Commun. 2001, 57 -
4a
Lavallée J.-F.Spino C.Ruel R.Hogan KT.Deslongchamps P. Can. J. Chem. 1992, 70: 1406 -
4b
Mullah KB.Sutherland JK. J. Chem. Soc., Perkin Trans. 1 1992, 1237 - 5
Nahm S.Weinreb SM. Tetrahedron Lett. 1981, 22: 3815 -
6a
Bel-Rhlid R.Renard MF.Veschambre H. Bull. Soc. Chim. Fr. 1996, 133: 1011 -
6b
Stanetty P.Krumpak B.Rodler IK. J. Chem. Res., Miniprint 1995, 2110 - 7
Riebel B. Ph. D. Thesis University of Düsseldorf; Düsseldorf: 1996. -
9a
Noyori R.Tokunaga M.Kitamura M. Bull. Chem. Soc. Jpn. 1995, 68: 36 ; and references cited therein -
9b
Stecher H.Faber K. Synthesis 1997, 1 ; and references cited therein -
10a
Tsuboi S.Nishiyama E.Furutani H.Utaka M.Takeda A. J. Org. Chem. 1987, 52: 1359 -
10b
Fujisawa T.Mobele BI.Shimizu M. Tetrahedron Lett. 1992, 33: 5567 -
10c
Zelinski T.Liese A.Wandrey C.Kula M.-R. Tetrahedron: Asymmetry 1999, 10: 1681 -
10d
Hayakawa R.Shimizu M. Synlett 1999, 1298 ; (α-substituted β-keto aldehyde) - Lactone 6 is known in racemic form:
-
11a
Adams MA.Duggan AJ.Smolanoff J.Meinwald J. J. Am. Chem. Soc. 1979, 101: 5364 -
11b
Willson TM.Kocienski P.Jarowicki K.Isaac K.Faller A.Campbell SF.Bordner J. Tetrahedron 1990, 46: 1757 -
11c Lactone syn-(5R,6R)-6 has been used in the synthesis of (+)-pederin:
Nakata T.Nagao S.Oishi R. Tetrahedron Lett. 1985, 26: 6465 -
12a
Akita H.Furuichi A.Koshiji H.Horikoshi K.Oishi T. Chem. Pharm. Bull. 1983, 31: 4376 -
12b
Fráter G.Müller U.Günther W. Tetrahedron 1984, 40: 1269 -
12c
Nakamura K.Miyai T.Nagar A.Oka S.Ohno A. Bull. Chem. Soc. Jpn. 1989, 62: 1179 -
12d
Shieh W.-R.Sih CJ. Tetrahedron: Asymmetry 1993, 4: 1259 - Recent applications of XAD-7 in bioconversions:
-
14a
Nakamura K.Fujii M.Ida Y. J. Chem. Soc., Perkin Trans. 1 2000, 3205 -
14b
D"Arrigo P.Fantoni GP.Servi S.Strini A. Tetrahedron: Asymmetry 1997, 8: 2375 -
14c
Vicenzi JT.Zmijewski MJ.Reinhard MR.Landen BE.Muth WL.Marler PG. Enzyme Microb. Technol. 1997, 20: 494 - 15
Kallimopoulos T.Deschenaux P.-F.Jacot-Guillarmod A. Helv. Chim. Acta 1991, 74: 1233 - 16
Ohloff G. Scent and Fragrances Springer; Berlin: 1994. p.182 - 17
Carlson RM.Oyler AR.Peterson JR. J. Org. Chem. 1975, 40: 1610 -
18a
Davies-Coleman MT.Rivett DEA. Fortschr. Chem. Org. Naturst. 1989, 55: 1 -
18b
Collett LA.Davies-Coleman MT.Rivett DEA. Fortschr. Chem. Org. Naturst. 1998, 75: 181 ; and references cited therein - 19 Procedure similar to:
Gilbreath SG.Harris CM.Harris TM. J. Am. Chem. Soc. 1988, 110: 6172 - Preparation of bisenolates according to:
-
22a
Weiler L. J. Am. Chem. Soc. 1970, 92: 6702 -
22b We found that an ester-based acylation procedure described by the same author resulted in low yields:
Huckin SN.Weiler L. Can. J. Chem. 1974, 52: 1343 ; Weinreb amides were therefore applied as acylating reagents -
22c
Hanamoto T.Hiyama T. Tetrahedron Lett. 1988, 29: 6467 - Procedure similar to:
-
26a
Ohta S.Shimabayashi A.Hayakawa S.Sumino M.Okamoto M. Synthesis 1985, 45 -
26b
Deschenaux P.-F.Kallimopoulos T.Stœckli-Evans H.Jacot-Guillarmod A. Helv. Chim. Acta 1989, 72: 731 - 27 Prepared from compound rac-9 as described in the general procedure I. Compound rac-9, in turn, was prepared from tert-butyl acetoacetate and propionaldehyde according to:
Huckin SN.Weiler L. Can. J. Chem. 1974, 52: 2157
References and Notes
Wolberg M., Hummel W., Müller, M.; Chem.-Eur. J., in press.
13In a hexane-buffer biphasic system the reduction of compound 2 with recLBADH proceeded to only 20% conversion after five days (NADPH-recycling with 2-propanol).
20Hydrochloric acid was applied at 2 mol L- 1 and the washed silica gel was dried at 105 °C for 24 h.
21If necessary, alcohols were acetylated prior to GC MS-analysis: To a CH2Cl2 solution (200 µL) of the analyte (1-5 mmol L- 1) were added trifluoroacetic acid anhydride (7 µL) and pyridine (5 µL). The vial was capped and incubated at 40 °C for 10 min.
23In CDCl3 solution, this compound exists in three tautomeric forms according to 1H NMR spectroscopy (20 °C). In DMSO-d 6, one of the two enol forms is suppressed to approx. 5%.
24Calculation based on the relative intensity within the following three pairs of 13C-signals: δC-2( syn )/δC-2( anti ), δC-4( syn )/δC-4( anti )and δC-5( syn )/δC-5( anti )(average value; maximum deviation ±8%). Signals of the enol forms were ignored since it can be assumed that both diastereomers undergo enolization to a similar extent.
25Data taken from the diastereomeric mixture, reference 28.
28Lactone syn/anti-rac-6 was prepared from compound syn/anti-rac- 4 according to the general procedure II. Compound syn/anti-rac-4, in turn, was prepared from tert-butyl acetate and syn/anti-rac-8 [12] c as described for the (4R,5S)-stereo-isomer.