Horm Metab Res 2001; 33(4): 201-206
DOI: 10.1055/s-2001-14950
Original Basic

© Georg Thieme Verlag Stuttgart · New York

Protein Kinase C α Modulates the Ca2+ Influx Phase of the Ca2+ Response to 1α,25-Dihydroxy-Vitamin-D3 in Skeletal Muscle Cells

D. A. Capiati, G. Vazquez, R. L. Boland
  • Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan Bahía Blanca, Argentina
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Treatment of chick skeletal muscle cells with 1α,25-dihydroxy-vitamin D3 [1α,25(OH)2D3] triggers a rapid and sustained increase in cytosolic Ca2+ ([Ca2+]i), which depends on Ca2+ mobilization from inner stores and extracellular Ca2+ entry. Fluorimetric analysis of changes in [Ca2+]i in Fura-2-loaded cells revealed that the hormone significantly stimulates the Ca2+ influx phase within the concentration range of 10-12 - 10-6 M, with maximal effects (3.5-fold increase) at 10-9 M 1α,25(OH)2D3. The effects of the sterol on the Ca2+ entry pathway were abolished by the PKC inhibitors bisindolylmaleimide and calphostin. We have recently shown that, in these cells, 1α,25(OH)2D3 activates and translocates PKC α to the membrane, suggesting that this isozyme accounts for PKC-dependent 1α,25(OH)2D3 modulation of Ca2+ entry. The role of PKC α was specifically addressed here using antisense technology. When the expression of PKC α was selectively knocked out by intranuclear microinjection of an antisense oligonucleotide against PKC α mRNA, the Ca2+ influx component of the response to 1α,25(OH)2D3 was markedly reduced (- 60 %). These results demonstrate that 1α,25(OH)2D3-induced activation of PKC α enhances extracellular Ca2+ entry partially contributing to maintainance of the sustained phase of the Ca2+ response to the sterol.

References:

  • 1 Boland R. Role of Vitamin D in skeletal muscle function.  Endocr Rev. 1986;  7 434-448
  • 2 De Boland A R, Boland R. Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxy-vitamin D3 are suppressed by calcium channel blockers.  Endocrinology. 1987;  120 1858-1864
  • 3 De Boland A R, Boland R. Non-genomic signal transduction pathway of vitamin D in muscle.  Cell Signal. 1994;  6 717-724
  • 4 Boland R, De Boland A R, Marinissen M, Santillan G, Vazquez G, Zanello S. Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. .  Mol Cell Endocrinol. 1995;  114 1-8
  • 5 Morelli S, De Boland A R, Boland R. Generation of inositol phosphates, diacylglicerol and calcium fluxes in myoblasts treated with 1,25-dihydroxyvitamin D3. .  Biochem J. 1993;  289 675-679
  • 6 Morelli S, Boland R, De Boland A R. 1,25(OH)2-vitamin D3 stimulation of phospholipases C and D in muscle cells involves extracellular calcium and a pertussis-sensitive G protein.  Mol Cell Endocrinol. 1996;  122 207-211
  • 7 Vazquez G, Boland R, De Boland A R. Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclicAMP pathway in rat and chick myoblasts.  Biochim Biophys Acta. 1995;  1269 91-97
  • 8 Vazquez G, De Boland A R. Involvement of protein kinase C in the modulation of 1.25-dihydroxy-vitamin D3 induced 45Ca2+ uptake in rat and chick cultured myoblasts.  Biochim Biophys Acta. 1996;  1310 157-162
  • 9 Vazquez G, De Boland A R, Boland R. 1,25-(OH)2-vitamin D3 stimulates the adenylyl cyclase pathway in muscle cells by a GTP-dependent mechanism which presumably involves phosphorylation of Gαi.  Biochem Biophys Res Commun. 1997;  234 125-128
  • 10 Vazquez G, De Boland A R, Boland R. Stimulation of Ca2+ release-activated Ca2+ channels as a potential mechanism involved in non-genomic 1,25(OH)2-vitamin D3-induced Ca2+ entry in skeletal muscle cells.  Biochem Biophys Res Commun. 1997;  239 562-565
  • 11 Vazquez G, De Boland A R. Stimulation of dihydropyridine-sensitive Ca2+ influx in cultured myoblasts by 1,25(OH)2-vitamin D3. .  Biochem Mol Biol Int. 1993;  31 677-684
  • 12 Vazquez G, De Boland A R, Boland R. 1,25-dihydroxy-vitamin D3 induced store-operated Ca2+ influx in skeletal muscle cells.  J Biol Chem. 1998;  273 33 954-33 960
  • 13 Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C.  Science. 1992;  258 607-614
  • 14 Newton A C. Protein kinase C: structure, function, and regulation.  J Biol Chem. 1995;  270 28 495-28 498
  • 15 De Boland A R, Norman A. Evidence for involvement of protein kinase C and cyclic adenosine 3’,5’ monophosphate-dependent protein kinase in the 1,25-dihydroxy-vitamin D3-mediated rapid stimulation of intestinal Ca2+ transport (transcaltachia).  Endocrinology. 1990;  127 39-45
  • 16 Bissonnette M, Tien X, Niedziela S, Hartmann S, Frawlwy B, Roy H, Sitrin M, Perlman R, Brasitus A. 1,25(OH)2 vitamin D3 activates PKC-alpha in Caco-2 cells: a mechanism to limit secosteroid-induced rise in [Ca2+]i.  Am J Physiol. 1994;  267 G465-G475
  • 17 Simboli-Campbell M, Gagnon A, Franks D, Welsh J. 1,25-Dihydroxyvitamin D3 translocates protein kinase C beta to nucleus and enhances plasma membrane association of protein kinase C alpha in renal epithelial cells.  J Biol Chem. 1994;  269 3257-3264
  • 18 Simpson R U, O’Connell T D, Pan Q, Newhouse J, Somerman M J. Antisense oligonucleotides targeted against protein kinase Cbeta and CbetaII block 1,25-(OH)2D3-induced differentiation.  J Biol Chem. 1998;  273 19 587-19 591
  • 19 Bellido T, Fernandez L, Morelli S, Boland R. Evidence for the participation of protein kinase C and 3’,5’-cyclic AMP-dependent protein kinase in the stimulation of muscle cell proliferation by 1,25-dihydroxy-vitamin D3.  Mol Cell Endocrinol. 1993;  90 231-238
  • 20 Capiati D A, Vazquez G, Téllez-Iñón M T, Boland R L. Role of PKC in 1,25(OH)2-vitamin D3 regulation of intracellular calcium levels during development of sekeletal muscle cells in culture.  J Cell Biochem. 2000;  77 200-212
  • 21 Capiati D A, Limbozzi F, Téllez-Iñón M T, Boland R L. Evidence on the participation of protein kinase α in the proliferation of cultured myoblasts.  J Cell Biochem. 1999;  74 292-300
  • 22 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 23 Snedecor G, Cochran W. Statistical Methods.  Ames, IA:; Iowa State University Press, 1967
  • 24 Pliska V. Models to explain dose-response relationships that exhibit a downturn phase.  Trends Pharmacol Sci. 1994;  15 178-181
  • 25 Civitelli R, Kim Y S, Gunsten S Y, Fujimori A, Huskey M, Avioli L V, Hruska K A. Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells.  Endocrinology. 1990;  127 2253-2262
  • 26 Picotto G, Massheimer V, Boland R L. Acute stimulation of intestinal cell calcium influx induced by 17βestradiol via the cAMP messenger system.  Mol Cell Endocrinol. 1996;  119 129-134
  • 27 Martiny-Baron G, Kazanietz M G, Mischak H, Blumberg P M, Kochs G, Hug H, Marme D, Schachtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go6976.  J Biol Chem. 1993;  268 9194-9197
  • 28 Keenan C, Goode N, Pears C. Isoform specificity of activators and inhibitors of protein kinase C gamma and delta.  FEBS Letters. 1997;  415 101-108
  • 29 Kobayashi E, Nakano H, Morimoto M, Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase.  C Biochem Biophys Res Commun. 1989;  159 548-553
  • 30 Toullec D, Pianetti P, Coste H, Belleverque P, Grand-Perret T, Akajane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilowsky J. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C.  J Biol Chem. 1991;  264 15 771-15 781
  • 31 Albert P R, Morris S J. Antisense knockouts: molecular scalpels for the dissection of signal transduction.  Trends Pharmacol Sci. 1994;  15 250-254
  • 32 Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents.  Nature. 1991;  353 43-48
  • 33 Kalkbrenner F, Degtiar V E, Schenker M, Brendel S, Zobel A, Hescheler J, Wittig B, Schultz G. Subunit composition of G(o) proteins functionally coupling galanin receptors to voltage-gated calcium channels.  EMBO J. 1995;  14 4728-4737
  • 34 Kalkbrenner F, Dippel E, Schroff M, Wittig B, Schultz G. Nuclear application of antisense oligonucleotides by microinjection and ballistomagnetic transfer to identify G protein heterotrimers activating phospholipase C.  Methods in Mol Biol. 1997;  83 203-216
  • 35 Hong D H, Huang J, Ou B R, Yeh J Y, Saido T C, Cheeky P R, Forsberg N E. Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain.  Biochim Byophys Acta. 1995;  1267 45-54
  • 36 Cressman C M, Shea T B. Hyperphosphorylation of Tau and filopodial retraction following microinjection of protein kinase C catalytic subunits.  J Neurosci Res. 1995;  42 648-656
  • 37 Murray A, Fournier A, Hardy S. Proteolytic activation of protein kinase C-A physiological reaction.  Trends Neurol Sci. 1987;  12 53-54

R. L. Boland

Departamento de Biología
Bioquímica y Farmacia
Universidad Nacional del Sur

San Juan 670
(8000) Bahía Blanca
Argentina


Fax: Fax:+ 54 (291) 4595130

Email: E-mail:rboland@criba.edu.ar