Abstract
The photochemical reactions of acrylonitrile (1 ) with 1,5-dimethoxynaphthalene (2 ), 1-methoxynaphthalene (3 ) and 1,4-dimethoxynaphthalene (4 ) in various solvents have been investigated. In polar solvents (methanol and acetontrile), an electron transfer pathway leads to the formation of aromatic substitution (with 2 and 3 ) and addition products (with 4 ). In benzene, an exciplex-mediated [2π + 2π] cycloaddition occurs. The cycloadducts formed undergo a further photoinduced rearrangement via a [2σ + 2σ] cycloreversion followed by an intramolecular [4π + 2π] cycloaddition.
Key words
photochemistry - electron transfer - alkylations - cycloadditions - rearrangements
References and Notes
1
March J.
Advanced Organic Chemistry
Wiley Interscience;
New York:
1992.
p.534
For some recent examples see:
2a
Mangion D.
Arnold DR.
Can. J. Chem.
1999,
77:
1655
2b
Mangion D.
Arnold DR.
Cameron TS.
Robertson KN.
J. Chem. Soc., Perkin Trans. 2
2001,
48
2c
Mangion D.
Kendall J.
Arnold DR.
Org. Lett.
2001,
3:
45
For reviews on the synthetic aspects of electron transfer photochemistry see:
3a
Mattes SL.
Farid S. In Organic Photochemistry
Vol. 6:
Padwa A.
Marcel Dekker;
New York:
1983.
p.238
3b
Muller F.
Mattay J.
Chem. Rev.
1993,
93:
99
3c
Pandey G.
Top. Curr. Chem.
1993,
168:
175
3d
Mizuno K.
Otsuji Y.
Top. Curr. Chem.
1994,
169:
301
3e
Hintz S.
Heidbreder A.
Mattay J.
Top. Curr. Chem.
1996,
177:
77
4a
Ohashi M.
Tanaka Y.
Yamada S.
J. Chem. Soc., Chem. Commun.
1976,
800
4b
Ohashi M.
Tanaka Y.
Yamada S.
Tetrahedron Lett.
1977,
3629
5a
Bowman RM.
Chamberlain TR.
Huang CW.
McCullough JJ.
J. Am. Chem. Soc.
1970,
92:
4106
5b
Bowman RM.
Chamberlain TR.
Huang CW.
McCullough JJ.
J. Am. Chem. Soc.
1974,
96:
692
6
McCullough JJ.
Huang CW.
Can. J. Chem.
1969,
47:
757
7 Half-wave excited state oxidation potential, E
ox * = E
ox - E
0,0 , where E
ox is the half-wave oxidation potential of the ground state and E
0,0 is the excited state energy. Values obtained from Ref 3a.
8
Miyamoto T.
Mori T.
Odaira Y.
J. Chem. Soc., Chem. Commun.
1970,
1598
9 Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 162031-162034 (compunds 6 , 7 , 16 and 12 , respectively).Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk)
10
Zweig A.
Maurer AH.
Roberts BG.
J. Org. Chem.
1967,
32:
1322
11
Rehm D.
Weller A.
Isr. J. Chem.
1970,
8:
259
12 It has been estimated
[11 ]
that a PET process will proceed at a diffusion-controlled rate when the free energy is less than -20 kJ mol-1 .
13
House HO.
Huber LE.
Umen MJ.
J. Am. Chem. Soc.
1972,
94:
8471
14a
Lewis FD.
Kojima M.
J. Am. Chem. Soc.
1988,
110:
8664
14b
Bauld NL.
Tetrahedron
1989,
45:
5307
14c
Johnston LJ.
Schepp NP.
Adv. Electron Transfer Chem.
1996,
5:
41
15
Barltrop JA.
Carless HAJ.
J. Am. Chem. Soc.
1972,
94:
1951
16
Karplus M.
J. Am. Chem. Soc.
1963,
85:
2870
17
Breitmaier E.
Structure Elucidation by NMR in Organic Chemistry
Wiley Interscience;
New York:
1993.
p.43
18
Friebolin H.
Basic One- and Two-Dimensional NMR Spectroscopy
VCH;
New York:
1993.
p.91
19
Akhtar IA.
McCullough JJ.
J. Org. Chem.
1981,
46:
1447
20
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
21 Molecular Structure Corporation, teXsan for Windows, Single Crystal Structure Analysis Software , Version 1.06, 1997-1998.
22 Sheldrick, G. M. SHELX-97, Program for Crystal Structure Determinations; 1997.