Subscribe to RSS
DOI: 10.1055/s-2001-15071
The Photochemistry of Acrylonitrile with Methoxylated Naphthalenes: Introducing the Photochemical Electrophile-Olefin Combination, Aromatic Substitution (Photo-EOCAS) Reaction
Publication History
Publication Date:
24 September 2004 (online)
Abstract
The photochemical reactions of acrylonitrile (1) with 1,5-dimethoxynaphthalene (2), 1-methoxynaphthalene (3) and 1,4-dimethoxynaphthalene (4) in various solvents have been investigated. In polar solvents (methanol and acetontrile), an electron transfer pathway leads to the formation of aromatic substitution (with 2 and 3) and addition products (with 4). In benzene, an exciplex-mediated [2π + 2π] cycloaddition occurs. The cycloadducts formed undergo a further photoinduced rearrangement via a [2σ + 2σ] cycloreversion followed by an intramolecular [4π + 2π] cycloaddition.
Key words
photochemistry - electron transfer - alkylations - cycloadditions - rearrangements
- 1
March J. Advanced Organic Chemistry Wiley Interscience; New York: 1992. p.534 - For some recent examples see:
-
2a
Mangion D.Arnold DR. Can. J. Chem. 1999, 77: 1655 -
2b
Mangion D.Arnold DR.Cameron TS.Robertson KN. J. Chem. Soc., Perkin Trans. 2 2001, 48 -
2c
Mangion D.Kendall J.Arnold DR. Org. Lett. 2001, 3: 45 - For reviews on the synthetic aspects of electron transfer photochemistry see:
-
3a
Mattes SL.Farid S. In Organic Photochemistry Vol. 6:Padwa A. Marcel Dekker; New York: 1983. p.238 -
3b
Muller F.Mattay J. Chem. Rev. 1993, 93: 99 -
3c
Pandey G. Top. Curr. Chem. 1993, 168: 175 -
3d
Mizuno K.Otsuji Y. Top. Curr. Chem. 1994, 169: 301 -
3e
Hintz S.Heidbreder A.Mattay J. Top. Curr. Chem. 1996, 177: 77 -
4a
Ohashi M.Tanaka Y.Yamada S. J. Chem. Soc., Chem. Commun. 1976, 800 -
4b
Ohashi M.Tanaka Y.Yamada S. Tetrahedron Lett. 1977, 3629 -
5a
Bowman RM.Chamberlain TR.Huang CW.McCullough JJ. J. Am. Chem. Soc. 1970, 92: 4106 -
5b
Bowman RM.Chamberlain TR.Huang CW.McCullough JJ. J. Am. Chem. Soc. 1974, 96: 692 - 6
McCullough JJ.Huang CW. Can. J. Chem. 1969, 47: 757 - 8
Miyamoto T.Mori T.Odaira Y. J. Chem. Soc., Chem. Commun. 1970, 1598 - 10
Zweig A.Maurer AH.Roberts BG. J. Org. Chem. 1967, 32: 1322 - 11
Rehm D.Weller A. Isr. J. Chem. 1970, 8: 259 - 13
House HO.Huber LE.Umen MJ. J. Am. Chem. Soc. 1972, 94: 8471 -
14a
Lewis FD.Kojima M. J. Am. Chem. Soc. 1988, 110: 8664 -
14b
Bauld NL. Tetrahedron 1989, 45: 5307 -
14c
Johnston LJ.Schepp NP. Adv. Electron Transfer Chem. 1996, 5: 41 - 15
Barltrop JA.Carless HAJ. J. Am. Chem. Soc. 1972, 94: 1951 - 16
Karplus M. J. Am. Chem. Soc. 1963, 85: 2870 - 17
Breitmaier E. Structure Elucidation by NMR in Organic Chemistry Wiley Interscience; New York: 1993. p.43 - 18
Friebolin H. Basic One- and Two-Dimensional NMR Spectroscopy VCH; New York: 1993. p.91 - 19
Akhtar IA.McCullough JJ. J. Org. Chem. 1981, 46: 1447 - 20
Still WC.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923
References and Notes
Half-wave excited state oxidation potential, E ox* = E ox - E 0,0, where E ox is the half-wave oxidation potential of the ground state and E 0,0 is the excited state energy. Values obtained from Ref 3a.
9Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 162031-162034 (compunds 6, 7, 16 and 12, respectively).Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk)
12It has been estimated [11] that a PET process will proceed at a diffusion-controlled rate when the free energy is less than -20 kJ mol-1.
21Molecular Structure Corporation, teXsan for Windows, Single Crystal Structure Analysis Software, Version 1.06, 1997-1998.
22Sheldrick, G. M. SHELX-97, Program for Crystal Structure Determinations; 1997.