Abstract
The sensitivity of hybrid poplar (Populus tremula × P. alba) to oxidative stress mediated by paraquat exposure was analysed with leaf discs from wild-type plants and plants expressing the bacterial cDNA of the enzymes of glutathione synthesis, namely gshI, encoding γ-glutamylcysteine synthetase (ECS), or gshII, encoding glutathione synthetase (GS), both in the cytosol. It was expected that leaf discs containing more than 2-fold elevated glutathione concentrations due to over-expression of ECS are less susceptible to paraquat exposure than wild-type plants and transformants over-expressing GS. However, neither over-expression of GS nor of ECS improved paraquat tolerance of the leaves. This result was surprising, because in wild-type plants reduced paraquat sensitivity of young compared with mature leaves coincided with ca. 30 % higher glutathione contents of the young leaves. Apparently, developmental changes in paraquat sensitivity of poplar leaves are controlled by factors different from glutathione contents. Feeding experiments with glutathione and its metabolic precursor γ-glutamylcysteine (EC) plus gly showed that glutathione can provide protection from paraquat-mediated photo-oxidative stress; but at least ca. 5-fold elevated glutathione levels are required for this effect in poplar leaves. Currently, such high glutathione levels have not been achieved by the application of plant molecular biology techniques. The significance of glutathione for the compensation of photo-oxidative stress is discussed.
Abbreviations
EC: γ-glutamylcysteine
ECS: γ-glutamylcysteine synthetase
f.wt.: fresh weight
GS: glutathione synthetase
GSH: reduced glutathione
GSSG: oxidized glutathione
PAR: photosynthetically active radiation
Key words
Glutathione - oxidative stress - paraquat - poplar - stress protection
References
-
01
Allen, R. D..
(1995);
Dissection of Oxidative Stress Tolerance Using Transgenic Plants.
Plant Physiol..
107
1049-1054
-
02
Amsellem, Z.,, Jansen, M. A.,, Driesenaar, A. R.,, and Gressel, J..
(1993);
Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza.
.
Plant Physiol..
103
1097-1106
-
03
Aono, M.,, Kubo, A.,, Saji, H.,, Natori, T.,, Tanaka, K.,, and Kondo, N..
(1991);
Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase activity.
Plant Cell Physiol..
32
691-698
-
04
Aono, M.,, Kubo, A.,, Saji, H.,, Tanaka, K.,, and Kondo, N..
(1993);
Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity.
Plant Cell Physiol..
34
129-135
-
05
Aono, M.,, Saji, H.,, Sakamoto, A.,, Tanaka, K.,, Kondo, N.,, and Tanaka, K..
(1995);
Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase.
Plant Cell Physiol..
36
1687-1691
-
06
Arisi, A.- C. M.,, Noctor, G.,, Foyer, C. H.,, and Jouanin, L..
(1997);
Modification of thiol contents in poplars (Populus tremula × P. alba) over-expressing enzymes involved in glutathione biosynthesis.
Planta.
203
362-372
-
07 Asada, K.. (1994) Production and action of active oxygen species in photosynthetic tissues. Causes of Photoooxidative Stress and Amelioration of Defense Systems in Plants. Foyer, C. H. and Mullineaux, P. M., eds. Boca Raton; CRC Press pp. 74-104
-
08 Bergmann, L., and Rennenberg, H.. (1993) Glutathione metabolism in plants. Sulfur Nutrition and Assimilation in Higher Plants. De Kok, L. J., Stulen, I., Rennenberg, H., Brunold, C., and Rauser, W. E., eds. The Hague; SPB Acad. Publ. pp. 109-123
-
09 Bielski, B. H. J.. (1982) Chemistry of ascorbic acid radicals. Ascorbic Acid: Chemistry, Metabolism, and Uses. Sies, P. A. and Tolbert, B. M., eds. Washington D.C.; American Chemical Society pp. 81-100
-
10 Bielski, B. H. J.. (1983) Evaluation of the reactivities of HO2/O2 with compounds of biological interest. Oxy-Radicals and Their Scavenger System: Molecular Aspects. Cohen, G. and Greenwald, R. G., eds. New York; Elsevier Publ. pp. 1-7
-
11
Creissen, G.,, Firmin, J.,, Fryer, M.,, Kular, B.,, Leyland, N.,, Reynolds, H.,, Pastori, G.,, Wellburn, F.,, Baker, N.,, Wellburn, A.,, and Mullineaux, P..
(1999);
Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress.
Plant Cell.
11
1277-1291
-
12
Donahue, J. L.,, Okpodu, C. M.,, Cramer, C. L.,, Grabau, E. A.,, and Alscher, R. G..
(1997);
Responses of antioxidants to paraquat in pea leaves.
Plant Physiol..
113
249-257
-
13 Foyer, C. H., and Rennenberg, H.. (2000) Regulation of glutathione synthesis and its role in abiotic and biotic stress defense. Sulfur Nutrition and Sulfur Assimilation in Higher Plants: molecular, biochemical and physiological aspects. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Bern; Paul Haupt pp. 127-153
-
14
Foyer, C. H.,, Lelandais, M.,, and Kunert, K.-J..
(1994);
Photoxidative stress in plants.
Physiol. Plant..
92
696-717
-
15
Foyer, C. H.,, Souriau, N.,, Perret, S.,, Lelandais, M.,, Kunert, K.-J.,, and Pruvost, C. X..
(1995);
Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.
Plant Physiol..
109
1049-1057
-
16
Gossett, D. R.,, Banks, S. W.,, Millhollon, E. P.,, and Lucas, M. C..
(1996);
Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione.
Plant Physiol..
112
803-809
-
17
Gullner, G.,, Komives, T.,, and Kiraly, L..
(1991);
Enhanced inducibility of antioxidant systems in a Nictoiana tabacum L. biotype results in acifluorfen resistance.
Z. Naturforsch..
10
875-881
-
18
Hartmann, T.,, Mult, S.,, Suter, M.,, Rennenberg, H.,, and Herschbach, C..
(2000);
Leaf age-dependent differences in sulphur assimilation and allocation in poplar (Populus tremula × P. alba) leaves.
J. Exp. Bot..
51
1077-1088
-
19
Herschbach, C.,, van der Zalm, E.,, Schneider, A.,, Jouanin, L.,, De Kok, L. J.,, and Rennenberg, H..
(2000);
Regulation of sulphur nutrition in wildtype and transgenic poplar overexpressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S.
Plant Physiol..
124
461-473
-
20
Hossain, M.,, Nakano, Y.,, and Asada, K..
(1984);
Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide.
Plant Cell Physiol..
25
385-395
-
21
Leplé, J.,, Brasileiro, A. C.,, Michel, M. F.,, Delmotte, F.,, and Jouanin, L..
(1992);
Transgenic poplars: Expression of chimeric genes using four different constructs.
Plant Cell Reporter.
11
137-141
-
22
Lichtenthaler, H. K., and Wellburn, A. R..
(1983);
Determination of total carotinoids and chlorophylls a and b of leaf extracts in different solvents.
Biochem. Soc. Transact..
603
591-592
-
23
Malan, C.,, Greyling, M. M.,, and Gressel, J..
(1990);
Correlation between copper zinc superoxide dismutase and glutathione reductase and environmental and xenobiotic stress tolerance in maize inbreds.
Plant Sci..
69
157-166
-
24
May, M. J.,, Vernoux, T.,, Leaver, C.,, van Montagu, M.,, and Inzé, D..
(1998);
Glutathione homeostasis in plants: implications for environmental sensing and plant development.
J. Exp. Bot..
49
649-667
-
25
Noctor, G., and Foyer, C. H..
(1998);
Ascorbate and glutathione: keeping active oxygen under control.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
49
249-279
-
26
Noctor, G.,, Strohm, M.,, Jouanin, L.,, Kunert, K. J.,, Foyer, C. H.,, and Rennenberg, H..
(1996);
Synthesis of glutathione in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing γ-glutamylcysteine synthetase.
Plant Physiol..
112
1071-1078
-
27
Pastori, G. M., and Trippi, V. S..
(1993);
Antioxidative protection in a drought-resistant maize strain during leaf senescence.
Physiol. Plant..
87
227-231
-
28 Polle, A., and Rennenberg, H.. (1993) Significance of antioxidants in plant adaptation to environmental stress. Plant Adaptation to Environmental Stress. Fowden, L., Mansfield T., and Stoddard, F., eds. London; Chapman and Hall pp. 263-273
-
29 Polle, A., and Rennenberg, H.. (1994) Photooxidative stress in tress. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Foyer, C. H. and Mullineaux, P. M., eds. Boca Raton; CRC Press pp. 199-218
-
30
Rennenberg, H., and Brunold, C..
(1994);
Significance of glutathione metabolism in plants under stress.
Progr. Bot..
55
142-156
-
31
Rennenberg, H., and Polle, A..
(1994);
Protection from oxidative stress in transgenic plants.
Biochem. Soc. Trans..
22
936-940
-
32
Schupp, R., and Rennenberg, H..
(1988);
Diurnal changes in glutathione content of spruce needles (Picea abies L.).
Plant Sci..
57
113-117
-
33
Shaaltiel, Y.,, Glazer, A.,, Bocion, P. F.,, and Gressel, J..
(1988);
Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat sulfur dioxide and ozone.
Pestic. Biochem..
31
13-23
-
34
Shaaltiel, Y., and Gressel, J..
(1986);
Multienzyme oxygen radical detoxifiying system correlated with paraquat resistance in Conyza-Bonariensis.
Pestic. Biochem..
26
22-28
-
35 Strohm, M.. (1996) Biochemische, physiologische und molekulare Grundlagen des Glutathion-Stoffwechsels in Pappeln (Populus tremula × P. alba).
. University of Freiburg, Germany; Doctoral Thesis
-
36
Strohm, M.,, Jouanin, L.,, Kunert, K.-J.,, Pruvost, C.,, Polle, A.,, Foyer, C. H.,, and Rennenberg, H..
(1995);
Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase.
Plant J..
7
141-145
H. Rennenberg
Albert-Ludwigs-Universität Freiburg
Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie
Georges-Köhler-Allee 053/054
79110 Freiburg i. Br.
Germany
eMail: here@ruf.uni-freiburg.de
Section Editor: U. Lüttge