Plant Biol (Stuttg) 2001; 3(3): 288-298
DOI: 10.1055/s-2001-15203
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Photosynthesis, Soluble and Structural Carbon Compounds in Two Mediterranean Oak Species (Quercus pubescens and Q. ilex) after Lifetime Growth at Naturally Elevated CO2 Concentrations

L. Blaschke 1 , M. Schulte 1 , A. Raschi 2 , N. Slee 3 , H. Rennenberg 1 , A. Polle 4
  • 1 Institut für Forstbotanik und Baumphysiologie, Albert-Ludwigs Universität, Freiburg, Germany
  • 2 CNR-IATA, Institute of Environmental Analysis and Remote Sensing for Agriculture, Firenze, Italy
  • 3 John Tabor Laboratories, Department of Biological Sciences, University of Essex, Colchester, United Kingdom
  • 4 Forstbotanisches Institut, Georg-August-Universität, Göttingen, Germany
Further Information

Publication History

March 1, 2001

April 23, 2001

Publication Date:
31 December 2001 (online)

Abstract

To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations (pCO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with “control” sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated pCO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated pCO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.

Abbreviations

PAR: photosynthetically active radiation

Rubisco: ribulose-1,5 bisphosphate carboxylase/oxygenase

References

  • 01 Atkinson,  C. J.,, Taylor,  M. J.,, Wilhins,  D.,, and Besford,  T. R.. (1997);  Effects of elevated CO2 on chloroplast components, gas exchange and growth of oak and cherry.  Tree Physiol.. 17 319-325
  • 02 Bolin,  B.. (1998);  The Kyoto negotiations on climate change: a science perspective.  Science. 279 330-331
  • 03 Bradford,  M. M.. (1976);  A rapid and sensitive assay for the quantification of microgram quantities of protein utilizing the principal of protein dye binding.  Anal. Biochem.. 72 248-254
  • 04 Bruce,  R. J., and West,  C. A.. (1989);  Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean.  Plant Physiol.. 31 241-247
  • 05 Chaves,  M. M.,, Pereira,  J. S.,, Cerasoli,  J.,, Clifton-Brown,  J.,, Miglietta,  F.,, and Raschi,  A.. (1995);  Leaf metabolism during summer drought in Quercus ilex trees with lifetime exposure to elevated CO2.  J. Biogeogr.. 22 255-259
  • 06 Curtis,  P. S.. (1996);  A meta analysis of leaf gas exchange and nitrogen in trees under elevated carbon dioxide.  Plant Cell Environm.. 19 127-137
  • 07 Ellsworth,  D. S.,, Oren,  R.,, Huang,  C.,, Phillips,  N.,, and Hendrey,  G. R.. (1995);  Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment.  Oecol.. 104 139-146
  • 08 Fordham,  M.,, Barnes,  J. D.,, Bettarini,  I.,, Polle,  A.,, Slee,  N.,, Raines,  C.,, Miglietta,  F.,, and Raschi,  A.. (1997);  The impact of elevated CO2 on growth and photosynthesis in Agrostis canina L. ssp. Montelucci adapted to contrasting atmospheric CO2 concentrations.  Oecol.. 110 169-178
  • 09 Griffin,  K.,, Tissue,  D.,, Turnbull,  M.,, and Whitehead,  D.. (2000);  The onset of photosynthetic acclimation to elevated CO2 partial pressure in field-grown Pinus radiata D. Don. after 4 years.  Plant Cell Environm.. 23 1089-1098
  • 10 Gunderson,  C. A., and Wullschleger,  S. D.. (1994);  Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective.  Photosynth. Res.. 39 369-388
  • 11 Hättenschwiler,  S.,, Miglietta,  F.,, Raschi,  A.,, and Körner,  C.. (1997 a);  30 years of in situ tree growth under elevated CO2: a model for future forest responses?.  Global Change Biol.. 3 463-471
  • 12 Hättenschwiler,  S.,, Miglietta,  F.,, Raschi,  A.,, and Körner,  C.. (1997 b);  Morphological adjustments to elevated CO2 in mature Q. ilex trees growing around natural CO2 springs.  Acta Oecol.. 18 361-365
  • 13 Idso,  S. B., and Kimball,  B. A.. (1991);  Downward regulation of photosynthesis and growth at high CO2 levels.  Plant Physiol.. 96 990-992
  • 14 Jang,  J. C., and Sheen,  J.. (1997);  Sugar sensing in higher plants.  Trends in Plant Sci.. 2 208-214
  • 15 Jarvis,  P., ed.. (1998) European forests and global change: the likely impacts of rising CO2 and temperature. Cambridge, UK; Cambridge University Press pp. 380
  • 16 Körner,  C., and Miglietta,  F.. (1994);  Long term effects of naturally elevated CO2 on mediterranean grassland and forest trees.  Oecol.. 99 343-351
  • 17 Lee,  H. S. J., and Jarvis,  P. G.. (1995);  Trees differ from crops and from each other in their responses to increases in CO2 concentration.  J. Biogeogr.. 22 323-330
  • 18 Miglietta,  F.,, Badiani,  M.,, Bettarini,  I.,, van Gardingen,  P.,, Selvi,  F.,, and Raschi,  A.. (1995) Preliminary studies of the long-term CO2 response of mediterranean vegetation around natural CO2 vents. Global Change and Mediterranean-type Ecosystems. Moreno, J. M. and Oechel, W. C., eds. Berlin, Germany; Springer Verlag pp. 102-120
  • 19 Miglietta,  F.,, Raschi,  A.,, Bettarini,  I.,, Resti,  R.,, and Selvi,  F.. (1993);  Natural CO2 springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO2 concentrations.  Plant Cell Environm.. 16 873-878
  • 20 Miglietta,  F., and Raschi,  A.. (1993);  Studying the effect of elevated CO2 in the open in a naturally enriched environment in Central Italy.  Vegetatio. 104/105 391-400
  • 21 Mousseau,  M.,, Dufrene,  E.,, El Kohen,  A.,, Epron,  D.,, Godard,  D.,, Rodolphe,  L.,, Pontailler,  J. Y.,, and Saugier,  B.. (1996) Growth strategy and tree response to elevated CO2: a comparison of beech (Fagus sylvatica) and sweet chestnut (Castanea sativa Mill.). Carbon Dioxide and Terrestrial Ecosystems. Koch, G. W. and Mooney, H. A., eds. San Diego, USA; Academic Press Inc. pp. 71-86
  • 22 Norby,  R. J.,, Wullschleger,  S. D.,, and Gunderson,  C. A.. (1996) Tree responses to elevated CO2 and implications for forests. Carbon Dioxide and Terrestrial Ecosystems. Koch, G. W. and Mooney, H. A., eds. San Diego, USA; Academic Press Inc. pp. 1-19
  • 23 Pettersson,  R., and McDonald,  A. J. S.. (1992);  Effects of elevated carbon dioxide concentration on photosynthesis and growth of small birch plants (Betula pendula Roth.) at optimal nutrition.  Plant Cell Environm.. 15 911-919
  • 24 Raiesi Gahrooee,  F.. (1998);  Impacts of elevated atmospheric CO2 on litter quality, litter decomposability, and nitrogen turn-over rate of two oak species in a mediterranean forest ecosystem.  Global Change Biol.. 4 667-677
  • 25 Rennenberg,  H.,, Schneider,  S.,, and Weber,  P.. (1996);  Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field.  J. Exp. Bot.. 47 1431-1438
  • 26 Rey,  A., and Jarvis,  P. G.. (1998);  Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees.  Tree Physiol.. 18 441-450
  • 27 Rogers,  A.,, Fischer,  B. U.,, Bryant,  J.,, Frehner,  M.,, Blum,  H.,, Raines,  C. A.,, and Long,  S. P.. (1998);  Acclimation of photosynthesis to elevated CO2 under low nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment.  Plant Physiol.. 118 683-689
  • 28 Rogers,  H. H.,, Runion,  G. B.,, and Krupa,  S V.. (1994);  Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere.  Environm. Poll.. 83 155-189
  • 29 Rowland,  A. P., and Roberts,  J. D.. (1994);  Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods.  Comm. Soil Plant Anal.. 25 269-277
  • 30 Saxe,  H.,, Ellsworth,  D. S.,, and Heath,  J.. (1998);  Tree and forest functioning in an enriched CO2 atmosphere.  New Phytologist. 139 395-436
  • 31 Scarascia-Mugnozza,  G.,, De Angelis,  P.,, Matteuci,  G.,, and Valentini,  R.. (1996);  Long-term exposure to elevated [CO2] in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress.  Plant Cell Environm.. 19 643-654
  • 32 Schimel,  D.,, Alves,  D.,, Enting,  I.,, Heiman,  M.,, Joos,  F.,, Raynaud,  D.,, and Wigley,  T.. (1995) Radiative forcing of climate change. Climate Change 1995. The Science of Climate Change. Houghton, J. T., MeiraFilho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K., eds. Cambridge, UK; Cambridge University Press pp. 35-71
  • 33 Schneider,  S.,, Geßler,  A.,, Weber,  P.,, von Sengbusch,  D.,, Hanemann,  U.,, and Rennenberg,  H.. (1996);  Soluble N compounds in trees exposed to high loads of N: a comparison of spruce (Picea abies [L.] Karst) and beech (Fagus sylvatica L.) grown under field conditions.  New Phytol.. 134 103-114
  • 34 Schulte,  M.,, Herschbach,  C.,, and Rennenberg,  H.. (1998);  Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced sulphur in young pendunculate oak trees (Quercus robur L.).  Plant Cell Environm.. 21 917-926
  • 35 Schwanz,  P., and Polle,  A.. (1998);  Antioxidative systems, pigments and protein contents in leaves of adult Mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO2.  New Phytol.. 140 411-423
  • 36 Smeekens,  B., and Rook,  F.. (1997);  Sugar sensing and sugar-mediated signal transduction in plants.  Plant Physiol.. 115 7-13
  • 37 Terradas,  J.. (1999) Holm oak and oak forests: an introduction. Ecology of Mediterranean Evergreen Oak Forests. Rodà, F., Retana, J. M. J., Gracia, C. A., and Bellot, J., eds. Berlin, Germany; Springer Verlag pp. 3-14J
  • 38 Tognetti,  R.,, Johnson,  J. D.,, Michelozzi,  M.,, and Raschi,  A.,. (1998 a);  Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2.  Environ. Exp. Bot.. 39 233-245
  • 39 Tognetti,  R.,, Longobucco,  A.,, Miglietta,  F.,, and Raschi,  A.. (1998 b);  Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a mediterranean carbon dioxide spring.  Plant Cell Environm.. 21 613-622
  • 40 Tognetti,  R.,, Cherubini,  P.,, and Innes,  J.. (2000);  Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations.  New Phytol.. 146 59-74
  • 41 Van Gardingen,  P. R.,, Grace,  J.,, Harkness,  D. D.,, Miglietta,  F.,, and Raschi,  A.. (1995);  Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature.  Agric. For. Meterol.. 73 17-27
  • 42 Wigley,  T. M. L.. (1997);  Implications of recent CO2 emission-limitation proposals for stabilization of atmospheric concentrations.  Nature. 390 267-270
  • 43 Will,  R. E., and Teskey,  E.. (1997);  Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status loblolly pine seedlings.  Tree Physiol.. 17 655-661

A. Polle

Forstbotanisches Institut
Universität Göttingen

Büsgenweg 2
37077 Göttingen
Germany

Email: apolle@gwdg.de

Section Editor: M. Riederer