Semin Respir Crit Care Med 2001; 22(3): 281-292
DOI: 10.1055/s-2001-15785
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Acute Respiratory Distress Syndrome: Adjuncts to Lung-Protective Ventilation

John P. Kress1 , John J. Marini2
  • 1Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois
  • 2Department of Pulmonary and Critical Care Medicine, University of Minnesota, St. Paul, Minnesota
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Despite recent advances in understanding, the management of acute respiratory distress syndrome (ARDS) remains a challenging clinical problem. Optimization of gas exchange and preventing the iatrogenic propagation of lung injury are cornerstones of its clinical management. A number of novel approaches and adjuncts to mechanical ventilation have been described over the past decade to help achieve these goals, and some have been widely implemented with varying degrees of success. This chapter will review the rationale and evidence supporting the use of such adjunctive strategies.

REFERENCES

  • 1 Parker J C, Hernandez L A, Longenecker G L, Peevy K, Johnson W. Lung edema caused by high peak inspiratory pressures in dogs: role of increased microvascular filtration pressure and permeability.  Am Rev Respir Dis . 1990;  142 321-328
  • 2 Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure.  Am Rev Respir Dis . 1988;  137 1159-1164
  • 3 Hernandez L A, Peevy K J, Moise A A, Parker J C. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.  J Appl Physiol . 1989;  66 2364-2368
  • 4 Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies.  Am J Respir Crit Care Med . 1998;  157 294-323
  • 5 American Thoracic Society, European Society of Intensive Care Medicine, Societe de Reanimation de Langue Francaise. International Consensus Conferences in Intensive Care Medicine: ventilator-associated lung injury in ARDS.  Am J Respir Crit Care Med . 1999;  160 2118-2124
  • 6 Feihl F, Perret C. Permissive hypercapnia: how permissive should we be?.  Am J Respir Crit Care Med . 1994;  150 1722-1737
  • 7 Gennari F J, Cohen J J. Intracellular acid-base physiology. In: Cohen JJ, Kassirer JP, eds. Acid/Base Boston: Little, Brown 1982: 25-40
  • 8 Siesjo B K, Folbergrova J, MacMillan V. The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate-carbonic acid method and from the creatine phosphokinase equilibrium.  J Neurochem . 1972;  19 2483-2495
  • 9 Siesjo B K. Quantification of pH regulation in hypercapnia and hypocapnia.  Scand J Clin Lab Invest . 1971;  28 113-119
  • 10 Cingolani H E, Koretsune Y, Marban E. Recovery of contractility and pHi during respiratory acidosis in ferret hearts: the role of Na+-H+ exchange.  Am J Physiol . 1990;  259 H843-H848
  • 11 Portman M A, Lassen M A, Cooper T G, Sills A M, Potchen E J. Intra- and extracellular pH of the brain in vivo studied by 31P-NMR during hyper- and hypocapnia.  J Appl Physiol . 1991;  71 2168-2172
  • 12 Barrere B, Meric P, Borredon J, Berenger G, Beloeil J C, Seylaz J. Cerebral intracellular pH regulation during hypercapnia in unanesthetized rats: a 31P nuclear magnetic resonance study.  Brain Res . 1990;  516 215-221
  • 13 Cohen Y, Chang L H, Litt L. Stability of brain intracellular lactate and 31P-metabolite levels at reduced intracellular pH during prolonged hypercapnia in rats.  J Cereb Blood Flow Metab . 1990;  10 277-284
  • 14 Orchard C, Kentish J. Effects of changes of pH on the contractile function of cardiac muscle.  Am J Physiol . 1990;  258 C967-C981
  • 15 Moody W. Effects of intracellular H+ on the electrical properties of excitable cells.  Annu Rev Neurosci . 1984;  7 257-278
  • 16 Madshus I H. Regulation of intracellular pH in eukaryotic cells.  Biochem J . 1988;  250 1-8
  • 17 Brofman J D, Leff A R, Munoz N M, Kirchhoff C, White S R. Sympathetic secretory response to hypercapnic acidosis in swine.  J Appl Physiol . 1990;  69 710-717
  • 18 Hoka S, Arimura H, Bosnjak Z J, Kampine J P. Regional venous outflow, blood volume, and sympathetic nerve activity during hypercapnia and hypoxic hypercapnia.  Can J Physiol Pharmacol . 1992;  70 1032-1039
  • 19 Foex P, Fordham R MM. Intrinsic myocardial recovery from the negative inotropic effects of acute hypercapnia.  Cardiovasc Res . 1972;  6 257-262
  • 20 Tang W C, Weil M H, Gazmuri R J, Bisera J, Rackow E C. Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart.  Crit Care Med . 1991;  19 218-224
  • 21 Walley K, Lewis T H, Wood L DH. Acute respiratory acidosis decreases left ventricular contractility but increases cardiac output in dogs.  Circ Res . 1990;  67 628-635
  • 22 Orchard C, Kentish J. Effects of changes of pH on the contractile function of cardiac muscle.  Am J Physiol . 1990;  258 C967-C981
  • 23 Wexels J C, Mjos O D. Effects of carbon dioxide and pH on myocardial function in dogs with acute left ventricular failure.  Crit Care Med . 1987;  15 1116-1120
  • 24 Hata K, Goto Y, Kawaguchi O. Hypercapnic acidosis increases oxygen cost of contractility in the dog left ventricle.  Am J Physiol . 1994;  266 H730-H740
  • 25 Pulley D D, Kirvassilis G V, Kelermenos N. Regional and global myocardial circulatory and metabolic effects of isoflurane and halothane in patients with steal-prone coronary anatomy.  Anesthesiology . 1991;  75 756-766
  • 26 Viitanen A, Salmenpera M, Heinonen J. Right ventricular response to hypercarbia after cardiac surgery.  Anesthesiology . 1990;  73 393-400
  • 27 Lassen N A. Brain extracellular pH: the main factor controlling cerebral blood flow.  Scand J Clin Lab Invest . 1968;  22 247-251
  • 28 Kontos H A, Raper A J. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels.  Stroke . 1977;  8 358-360
  • 29 Loftus C M, Silvidi J A, Bernstein D D, Kosier T. Effects of hypercapnia on cerebral blood flow following prophylactic and delayed experimental superficial temporal artery-middle cerebral artery bypass.  Surg Neurol . 1989;  31 183-189
  • 30 Eisele J H, Eger E I, Muallem M. Narcotic properties of carbon dioxide in the dog.  Anesthesiology . 1967;  28 856-865
  • 31 Sieker H O, Hickam J B. Carbon dioxide intoxication: the clinical syndrome, its etiology and management with particular reference to the use of mechanical respirators.  Medicine . 1956;  35 389-423
  • 32 Westlake E K, Simpson T, Kaye M. Carbon dioxide narcosis in emphysema.  Q J Med . 1955;  94 155-173
  • 33 Meissner H H, Franklin C. Extreme hypercapnia in a fully alert patient.  Chest . 1992;  102 1298-1299
  • 34 Caroll G C, Rothenberg D M. Carbon dioxide narcosis: pathological or ``pathillogical''?.  Chest . 1992;  102 986-988
  • 35 Kacmarek R, Hickling K G. Permissive hypercapnia.  Respir Care . 1993;  38 373-387
  • 36 Murray J F, Matthay M A, Luce J M, Flick M R. An expanded definition of the adult respiratory distress syndrome.  Am Rev Respir Dis . 1988;  138 720-723
  • 37 Hickling K G, Henderson S J, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome.  Intensive Care Med . 1990;  16 372-377
  • 38 Hickling K G, Walsh J, Henderson S J, Jackson R. Low mortality rate in adult respiratory distress syndrome using low volume pressure limited ventilation with permissive hypercapnia: a prospective study.  Crit Care Med . 1994;  22 1568-1578
  • 39 Amato M BP, Barbas C SV, Medeiros D M. Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome.  N Engl J Med . 1998;  338 347-354
  • 40 Brochard L, Roudot-Thoraval F, Roupie E. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1998;  158 1831-1838
  • 41 Brower R G, Shanholtz C B, Fessler H E. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients.  Crit Care Med . 1999;  27 1492-1498
  • 42 Hudson L D. Protective ventilation for patients with acute respiratory distress syndrome.  N Engl J Med . 1998;  338 385-387
  • 43 Stewart T E, Meade M O, Cook D J. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome.  N Engl J Med . 1998;  338 355-361
  • 44 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.  N Engl J Med . 2000;  342 1301-1308
  • 45 Artigas A, Bernard G R, Carlet J. The American-European Consensus Conference on ARDS. Part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling.  Am J Respir Crit Care Med . 1998;  157 1332-1347
  • 46 Laffey J G, Engelberts D, Kavanagh B P. Injurious effects of hypocapnic alkalosis in the isolated lung.  Am J Respir Crit Care Med . 2000;  162 399-405
  • 47 Laffey J G, Kavanagh B P. Carbon dioxide and the critically ill-too little of a good thing?.  Lancet . 1999;  354 1283-1286
  • 48 Weg J G, Anzueto A, Balk R A. The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome.  N Engl J Med . 1998;  338 341-346
  • 49 Nahum A, Shapiro R, Ravenscraft S A, Adams A B, Marini J J. Efficacy of expiratory tracheal gas insufflation in canine oleic acid-induced lung injury.  Am J Respir Crit Care Med . 1995;  152 489-495
  • 50 Ravenscraft S A, Burke W C, Nahum A. Tracheal gas insufflation augments CO2 clearance during mechanical ventilation.  Am J Respir Crit Care Med . 1993;  148 345-351
  • 51 Imanaka H, Kacmarek R M, Ritz R, Hess D. Tracheal gas insufflation-pressure control versus volume control ventilation: a lung model study.  Am J Respir Crit Care Med . 1996;  153 1019-1024
  • 52 Kalfon P, Umamaheswara Rao S G, Gallart L, Puybasset L, Coriat P, Rouby J J. Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome.  Anesthesiology . 1997;  87 6-17
  • 53 Ravenscraft S A, Shapiro R S, Nahum A. Tracheal gas insufflation: catheter effectiveness determined by expiratory flush volume.  Am J Respir Crit Care Med . 1996;  153 1817-1824
  • 54 Kirmse M, Fujino Y, Hromi J, Mang H, Hess D, Kacmarek R M. Pressure-release tracheal gas insufflation reduces airway pressures in lung-injured sheep maintaining eucapnia.  Am J Respir Crit Care Med . 1999;  160 1462-1467
  • 55 Gowski D T, Delgado E, Miro A M, Tasota F J, Hoffman L A, Pinsky M R. Tracheal gas insufflation during pressure-control ventilation: effect of using a pressure relief valve.  Crit Care Med . 1997;  25 145-152
  • 56 Imanaka H, Kirmse M, Mang H, Hess D, Kacmarek R M. Expiratory phase tracheal gas insufflation and pressure control in sheep with permissive hypercapnia.  Am J Respir Crit Care Med . 1999;  159 49-54
  • 57 Marini J J. Adjunctive ventilation with tracheal gas insufflation-good vibrations?.  Crit Care Med . 1996;  24 375-378
  • 58 Bryan A C. Conference on the scientific basis of respiratory therapy: pulmonary physiotherapy in the pediatric age group: comments of a devil's advocate.  Am Rev Respir Dis . 1974;  110 143-144
  • 59 Fridrich R, Krafft P, Hochleuthner H, Mauritz H. The effects of long-term prone positioning in patients with trauma-induced adult respiratory distress syndrome.  Anesth Analg . 1996;  83 1206-1211
  • 60 Chatte G, Sab J M, DuBois J M, Sirodot M, Gaussorgues P, Robert D. Prone position in mechanically ventilated patients with severe acute respiratory failure.  Am J Respir Crit Care Med . 1997;  155 473-478
  • 61 Gattinoni I, Pelosi P, Vitale G, Pesenti A, D'Andrea L, Mascheroni D. Body position changes redistribute lung computed tomographic density in patients with acute respiratory failure.  Anesthesiology . 1991;  74 15-23
  • 62 Mutoh T, Guest R J, Lamm W J, Albert R K. Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vitro.  Am Rev Respir Dis . 1992;  146 300-306
  • 63 Lamm W J, Graham M M, Albert R K. Mechanism by which the prone position improves oxygenation in acute lung injury.  Am J Respir Crit Care Med . 1994;  150 184-193
  • 64 Marini J J. PEEP in the prone position: reversing the perfusion imbalance.  Crit Care Med . 1999;  27 1-2
  • 65 Glenny R W, Lamm W J, Albert R K, Robertson H T. Gravity is a minor determinant of pulmonary blood flow distribution.  J Appl Physiol . 1991;  71 620-629
  • 66 Walther S M, Domino K B, Glenny R W, Hlastala M P. Positive end-expiratory pressure redistributes perfusion to dependent lung regions in supine but not prone lambs.  Crit Care Med . 1999;  27 37-45
  • 67 Albert R K, Hubmayr R D. The prone position eliminates compression of the lungs by the heart.  Am J Respir Crit Care Med . 2000;  161 1660-1665
  • 68 Broccard A F, Shapiro R S, Schmitz L L, Ravenscraft S A, Marini J J. Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome.  Crit Care Med . 1997;  25 16-27
  • 69 Broccard A, Shapiro R, Schmitz L, Adams A B, Nahum A, Marini J. Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs.  Crit Care Med . 2000;  28 295-303
  • 70 Dellinger R P. Inhaled nitric oxide versus prone positioning in acute respiratory distress syndrome.  Crit Care Med . 2000;  28 572-574
  • 71 Alexandrakis G, Lam B L. Bilateral posterior ischemic optic neuropathy after spinal surgery.  Am J Ophth . 1999;  127 354-355
  • 72 Willems M C, Voets A J, Welten R J. Two unusual complications of prone-dependency in severe ARDS.  Intensive Care Med . 1998;  24 276-281
  • 73 Rossaint R, Falke K, Lopez F, Slama K, Pison U, Zapol W M. Inhaled nitric oxide for the adult respiratory distress syndrome.  N Engl J Med . 1993;  328 399-405
  • 74 Dellinger R, Zimmerman J, Taylor R. Effects of inhaled nitric oxide in patients with acute respiratory distresss syndrome: results of a randomized phase II trial.  Crit Care Med . 1998;  26 15-23
  • 75 Lundin S, Mang H, Smithies H, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicenter study.  Intensive Care Med . 1999;  25 911-919
  • 76 Matthay M A, Pittet J F, Jayr C. Just say NO to inhaled nitric oxide for the acute respiratory distress syndrome.  Crit Care Med . 1998;  26 1-2
  • 77 Dellinger R P. Inhaled nitric oxide in acute lung injury and the acute respiratory distress syndrome: inability to translate physiologic benefit to clinical outcome benefit in adult clinical trials.  Intensive Care Med . 1999;  25 881-883
  • 78 Michael J R, Barton R G, Saffle J R. Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS.  Am J Respir Crit Care Med . 1998;  157 1372-1380
  • 79 Troncy E, Collet J P, Shapiro S. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study.  Am J Respir Crit Care Med . 1998;  157 1483-1488
  • 80 Christenson J, Lavoie A, O'Connor M, Bhorade S, Pohlman A, Hall J B. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide.  Am J Respir Crit Care Med . 2000;  161 1443-1449
  • 81 Rea W J, Eberle J W, Ecker R R, Watson J, Sugg W L. Long-term membrane oxygenation in respiratory failure.  Ann Thor Surg . 1973;  15 170-178
  • 82 National Heart, Lung and Blood Institute. Extracorporeal support for respiratory insufficiency: a collaborative study in response to RFP-NHLI-73-20 Bethesda: U.S. Department of Health, Education, and Welfare: National Institutes of Health 1979: 247-264
  • 83 Zapol W M, Snider M T, Hill J D. Extracorporeal membrane oxygenation in severe acute respiratory failure.  JAMA . 1979;  242 2193-2196
  • 84 Gattinoni L, Pesenti A, Mascheroni D. Low frequency positive pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure.  JAMA . 1986;  256 881-886
  • 85 Morris A H, Menlove R L, Rollins R J, Wallace C J, Beck E. A controlled clinical trial of a new three-step therapy that includes extracorporeal CO2 removal for ARDS.  Trans Am Soc Artif Intern Organs . 1988;  34 48-53
  • 86 Morris A H, Wallace C J, Menlove R L, et al.Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress. Am J Respir Crit Care Med .  1994;  149 295-305
  • 87 Petty T L, Silvers G W, Paul G W, Stanford R E. Abnormalities in lung elastic properties and surfactant function in adult respiratory distress syndrome.  Chest . 1979;  75 571-574
  • 88 Hallman M, Spragg R, Harrell J H, Moser K M, Gluck L. Evidence of lung surfactant abnormality in respiratory failure: study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol.  J Clin Invest . 1982;  70 673-683
  • 89 Long W, Corbet A, Cotton R. A controlled trial of synthetic surfactant in infants weighing 1250 g or more with respiratory distress syndrome.  N Engl J Med . 1991;  325 1696-1703
  • 90 Weg J G, Balk R A, Tharratt R S. Safety and potential efficacy of an aerosolized surfactant in human sepsis-induced adult respiratory distress syndrome.  JAMA . 1994;  272 1433-1438
  • 91 Spragg R G, Gilliard N, Richman P. Acute effects of a single dose of porcine surfactant on patients with the adult respiratory distress syndrome.  Chest . 1994;  105 195-202
  • 92 Anzueto A, Baughman R P, Guntupalli K K. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome.  N Engl J Med . 1996;  334 1417-1421
  • 93 Gregory T J, Steinberg K P, Spragg R. Bovine surfactant therapy for patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1997;  155 1309-1315
  • 94 Lowe C A, Shaffer T H. Pulmonary vascular resistance in the fluorocarbon-filled lung.  J Appl Physiol . 1986;  60 154-159
  • 95 Clark Jr C L, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure.  Science . 1966;  152 1755-1756
  • 96 Papo M C, Paczan P R, Fuhrman B P. Perfluorocarbon-associated gas exchange improves oxygenation, lung mechanics, and survival in a model of adult respiratory distress syndrome.  Crit Care Med . 1996;  24 466-474
  • 97 Al-Rahmani A, Awad K, Miller T F, Wolfson M R, Shaffer T H. Effects of partial liquid ventilation with perfluorodecalin in the juvenile rabbit lung after saline injury.  Crit Care Med . 2000;  28 1459-1464
  • 98 Zobel G, Rodl S, Urlesberger B, Dacar D, Trafojer U, Trantina A. The effect of positive end-expiratory pressure during partial liquid ventilation in acute lung injury in piglets.  Crit Care Med . 1999;  27 1934-1939
  • 99 Leach C L, Greenspan J S, Rubenstein S D. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome.  New Engl J Med . 1996;  335 761-767
  • 100 Hirschl R B, Pranikoff T, Wise C. Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome.  JAMA . 1996;  275 383-389
  • 101 Bartlett R, Croce M, Hirschl R. A phase II randomized, controlled trial of partial liquid ventilation (PLV) in adult patients with acute hypoxemic respiratory failure (AHRF).  Crit Care Med . 1997;  25 A35
    >