Int J Sports Med 2001; 22(3): 201-208
DOI: 10.1055/s-2001-16389
Training and Testing

© Georg Thieme Verlag Stuttgart · New York

Very Short (15 s - 15 s) Interval-Training Around the Critical Velocity Allows Middle-Aged Runners to Maintain V˙O2 max for 14 minutes

V. L. Billat1 , J. Slawinksi1 , V. Bocquet2 , P. Chassaing1 , A. Demarle1 , J. P. Koralsztein2
  • 1 Laboratoire d'étude de la motricité humaine, Université de Lille II, Faculté des Sciences du Sport, Ronchin, France
  • 2 Centre de Médecine du Sport C.C.A.S., Paris, France
Further Information

Publication History

Publication Date:
31 December 2001 (online)

The purpose of this study was to compare the effectiveness of three very short interval training sessions (15 - 15 s of hard and easier runs) run at an average velocity equal to the critical velocity to elicit V˙O2 max for more than 10 minutes. We hypothesized that the interval with the smallest amplitude (defined as the ratio between the difference in velocity between the hard and the easy run divided by the average velocity and multiplied by 100) would be the most efficient to elicit V˙O2 max for the longer time. The subjects were middle-aged runners (52 ± 5 yr, V˙O2 max of 52.1 ± 6 mL × min-1 × kg-1, vV˙O2 max of 15.9 ± 1.8 km × h- 1, critical velocity of 85.6 ± 1.2 % vV˙O2 max) who were used to long slow distance-training rather than interval training. They performed three interval-training (IT) sessions on a synthetic track (400 m) whilst breathing through the COSMED K4b2 portable metabolic analyser. These three IT sessions were: A) 90 - 80 % vV˙O2 max (for hard bouts and active recovery periods, respectively), the amplitude = (90 - 80/85) 100 = 11 %, B) 100- 70 % vV˙O2 max amplitude = 35 %, and C) 60 × 110 % vV˙O2 max amplitude = 59 %. Interval training A and B allowed the athlete to spend twice the time at V˙O2 max (14 min vs. 7 min) compared to interval training C. Moreover, at the end of interval training A and B the runners had a lower blood lactate than after the procedure C (9 vs. 11 mmol × l-1). In conclusion, short interval-training of 15 s - 15 s at 90 - 80 and 100 - 70 % of vV˙O2 max proved to be the most efficient in stimulating the oxygen consumption to its highest level in healthy middle-aged long-distance runners used to doing only long slow distance-training.

 References

  • 1 Astrand I, Astrand P O, Christensen E H, Hedman R. Intermittent muscular work.  Acta Physiol Scand. 1960;  48 448-453
  • 2 Astrand P O, Rodahl K. Textbook of Work Physiology. Physiological Bases of Exercise. New York; Mc Graw-Hill 1986: 336
  • 3 Aunola S, Rusko H. Reproducibility of aerobic and anaerobic thresholds in 20 - 50 year old men.  Eur J Appl Physiol. 1984;  53 260-266
  • 4 Beaver W L, Wasserman K, Whipp B J. On line computer analysis and breath by breath graphical display of exercise function tests.  J Appl Physiol. 1973;  38 1132-1139
  • 5 Billat V, Koralsztein J P. Significance of the velocity at V˙O2 max and time to exhaustion at this velocity.  Sports Med. 1996;  22 90-108
  • 6 Billat V, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein J P. Intermittent runs at vV˙O2 max enables subjects to remain at V˙O2 max for a longer time than severe submaximal runs.  Eur J Appl Physiol. 2000;  81 188-196
  • 7 Brickley G, Jenkins D J, Green S, Williams C A, Wishart C, McEmery M, Doust J. Metabolic responses to intermittent exercise using the critical power concept. In: Proceedings of the 4th Annual Congress of the European College of Sport Science, Roma, Italy;. 1999: 128
  • 8 Brooks G A, Fahey T D, White T P. Exercise Physiology. Mountain View, CA; Mayfield 1996: 500
  • 9 Christensen E H, Hedman R, Saltin B. Intermittent and continuous running.  Acta Physiol Scand. 1960;  5 269-286
  • 10 Daniels J, Scardina N. Interval training and performance.  Sports Med. 1984;  1 327-334
  • 11 Daniels J. Daniels' running formula. Champaign, IL; Human Kinetics 1998: 287
  • 12 Dennis S C, Noakes T D. Physiological and metabolic responses to increasing work-rates: relevance for exercise prescription.  J Sports Sci. 1998;  16 S77-S84
  • 13 Ettema J H. Limits of human performance and energy-production.  Int Z Angew Physiol. 1996;  22 45-54
  • 14 Gaesser G A, Poole D. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-70
  • 15 Gorostiaga E M, Walter C B, Foster C, Hickson R C. Uniqueness of interval and continuous training at the same maintained exercise intensity.  Eur J Appl Physiol. 1991;  63 101-107
  • 16 Gullstrand L. Physiological responses to short-duration high-intensity intermittent rowing.  Can J Appl Physiol. 1996;  21 197-208
  • 17 Housh D J, Housh T J, Bauge S M. The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry.  Ergonomics. 1989;  32 997-1004
  • 18 Newsholm E A. Application of principles of metabolic control to the problem of metabolic limitations in sprinting, middle distance, and marathon running.  Int J Sports Med. 1986;  7 66-70
  • 19 Noakes T D. Lore of Running. Champaign, IL; Leisure Press 1991: 450
  • 20 Noakes T D, Mynurgh K H, Schall R. Peak treadmill running velocity during the V˙O2 max test predicts running performance.  J Sports Sci. 1990;  8 35-45
  • 21 Paavolainen L M, Nummela A T, Rusko H K. Neuromuscular characteristics and muscle power as determinant of 5 km running performance.  Med Sci Sports Exerc. 1999;  31 124-130
  • 22 Paavolainen L, Hakkinen K, Hamalainen I, et al. Explosive-strength training improves 5 km running time by improving running economy and muscle power.  J Appl Physiol. 1999;  86 1527-1533
  • 23 Pepper M L, Housh T J, Johnson G O. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running.  Int J Sports Med. 1992;  13 121-124
  • 24 Péronnet F, Thibault G. Mathematical analysis of running performance and world running records.  J Appl Physiol. 1989;  67 453-465
  • 25 Rusko H K, Nummela A, Mero A. A new method for the evaluation of anaerobic running power in athletes.  Eur J Appl Physiol. 1993;  66 97-101
  • 26 Saltin B, Essen B, Pedersen P K. Intermittent Exercise: Its Physiology and Some Practical Applications. Medicine Sport. Vol 9: . Advances in Exercise Physiology. Basel SWI; Karger 1976: 23-51
  • 27 Sue D Y, Hansen J E, Blais M, Wasserman K. Measurement and analysis of gas exchange, using a programmable calculator.  J Appl Physiol. 1980;  49 456-461
  • 28 Wasserman K, Hansen J E, Sue D Y, Whipp B J, Casaburi R. Principles of Exercise Testing and Interpretation. Philadelphia, PA; Lea & Febiger 1994

V. L. Billat,PH. D. 

Centre de Médecine du Sport C. C. A. S.

2 Avenue Richerand
75 010 Paris
France


Phone: Tel.+ 33 (1) 42 02 08 18

Fax: Fax:+ 33 (1) 42 39 20 83

Email: E-mail:veronique.billat@wanadoo.fr