Subscribe to RSS
DOI: 10.1055/s-2001-16746
Bicyclic β-Lactones via Intramolecular NCAL Reactions with Cinchona Alkaloids: Effect of the C9-Substituent on Enantioselectivity and Catalyst Conformation
Publication History
Publication Date:
28 September 2004 (online)
Abstract
C9-Acylated cinchona alkaloids promote an intramolecular, nucleophile-catalyzed aldol-lactonization (NCAL) reaction leading to optically active bicyclic β-lactones. A mechanistic scheme is proposed for this catalytic, asymmetric process. Only small variations in enantioselectivity were observed for a variety of esters, a carbamate, and a carbonate at the C9 position of quinidine. A combination of coupling constants (3 J H8,H9) and nOe data was used to assign predominant solution conformations for these derivatives. Interestingly, a more rigid quinidine derivative gave a complete reversal in the sense of enantioselection.
Key words
asymmetric nucleophilic catalysis - aldol-lactonizations - 2-oxetanones - nuclear Overhauser effect - coupling constants
-
1a For a review of the chemistry of cinchona alkaloids, see:
Grethe G.Uskokovic MR. In Heterocyclic Compounds, The Monoterpenoid Indole Alkaloids Vol. 25: Wiley; New York: 1983. Part 4 Chap. XII. p.729 ; and references cited therein -
1b
Wynberg H. Top. Stereochem. 1986, 16: 87-130 -
2a
Wynberg H.Staring EGJ. J. Am. Chem. Soc. 1982, 104: 166 -
2b
Wynberg H.Staring EGJ. J. Chem. Soc., Chem. Commun. 1984, 1181 - 3
Calter MA.Guo X.Liao W. Org. Lett. 2001, 3: 1499 ; and references cited therein - 4
Taggi AE.Hafex AM.Wack H.Young B.Drury WJ.Lectka T. J. Am. Chem. Soc. 2000, 122: 7831 - 5
Wack H.Taggi AE.Hafez AM.Drury WJ.Lectka T. J. Am. Chem. Soc. 2001, 123: 1531 - 6
Chen Y.Tian S.-K.Deng L. J. Am. Chem. Soc. 2000, 122: 9542 ; and references cited therein - 7 For a recent review of the Baylis-Hillman reaction including the use of cinchona alkaloids as catalysts, see:
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 - 8
Yang HW.Romo D. Tetrahedron 1999, 51: 6401 - 9
Tennyson RL.Romo D. J. Org. Chem. 2000, 65: 7248 - 11
Floresca R.Kurihara M.Watt DS.Demir A. J. Org. Chem. 1993, 58: 2196 - 12
Braje WM.Holzgrefe J.Wartchow R.Hoffmann HMR. Angew. Chem. Int. Ed. 2000, 39: 2085 -
13a
Hiratake J.Inagaki M.Yamamoto Y.Oda J. J. Chem. Soc., Perkin Trans. 1 1987, 1053 -
13b Interestingly, the decrease in antimalarial activity of the epi-cinchona series has also been reported:
Kowalik JT.Lipinska T.Oleksyn BJ.Sliwinski J. Enantiomer 1999, 4: 389 -
13c
Karle JM.Karle IL.Gerena L.Milhous WK. Antimicrob. Agents Chemother. 1992, 36: 1538 - 14
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 -
15a
Dijkstra GDH.Kellogg RM.Wynberg H. Recl. Trav. Chim. Pays-Bas 1989, 108: 195 -
15b
Dijkstra GDH.Kellogg RM.Wynberg H.Svendsen JS.Marko I.Sharpless KB. J. Am. Chem. Soc. 1989, 111: 8069 -
15c
Dijkstra GDH.Kellogg RM.Wynberg H. J. Am. Chem. Soc. 1990, 112: 6121 - 16
Shitangkoon A.Vigh G. J. Chromatogr., A 1996, 738: 31 -
17a
Langer P.Hoffmann HMR. Tetrahedron 1997, 53: 9145 -
17b
Blaser HU.Jalett HP.Lottenbach W.Studer M. J. Am. Chem. Soc. 2000, 122: 12675 - 18
Stonehouse J.Adell P.Keeler J.Shaka AJ. J. Am. Chem. Soc. 1994, 116: 6037 - 19
Waddell TG.Woods LA.Harrison W.Meyer GM. J. Tenn. Acad. Sci. 1984, 54: 48 - 20
Pracejus H.Matje H. J. Prak. Chem. 1964, 24: 195 - 21
Pinazzi CP.Menil A.Pleurdeau A. Bull. Soc. Chim. Fr. 1973, 4: 1345 - 22
Iwabuchi Y.Nakatami M.Yokoyama N.Hakateyama S. J. Am. Chem. Soc. 1999, 121: 10219
References
Tennyson, R. L.; Cortez, G. S.; Romo, D. J. Am. Chem. Soc. 2001, accepted.