Klinische Neurophysiologie 2001; 32(3): 160-166
DOI: 10.1055/s-2001-17280
Originalia
© Georg Thieme Verlag Stuttgart · New York

Molekulare Mechanismen der Blockierung des muskulären nikotinischen Azetylcholinrezeptors

Molecular Block Mechanisms of the Muscular Nicotinic Acetylcholine ReceptorK.  Krampfl, J.  Bufler
  • Neurologische Klinik der Medizinischen Hochschule Hannover, Hannover
Further Information

Publication History

Publication Date:
19 September 2001 (online)

Abstract

The development of the patch clamp technique made it possible to study the interaction between drugs or biological preparations and muscular nicotinic acetylcholine receptor channels (nAChR). By detailed quantitative analysis of the effects of various compounds on macroscopic sodium currents through nAChR we could identify two molecular mechanisms of block: open channel block and competitive block. In the first case the binding site of the blocker occurs exclusively at the receptor channel in the open state. The latter one is characterized by competitive binding to the binding site of the agonist. Using the same experimental approach on immunological diseases of neuromuscular transmission, we could show marked block of membrane currents when exposing the nAChR to IgG preparations from sera of myasthenia gravis patients.

Zusammenfassung

Die Patch-clamp-Technik erlaubt die detaillierte Analyse von Membranströmen durch muskuläre nikotinische Azetylcholinrezeptoren (nAChR). Diese sind eine wesentliche Zielstruktur der pharmakologischen Blockade der neuromuskulären Übertragung. Dabei kann man mit Hilfe der Patch-clamp-Technik zwei wesentliche molekulare Blockmechanismen unterscheiden: Offenkanalblock und kompetitiven Block. Beim Offenkanalblock ist die Bindungsstelle nur im offenen Zustand des Rezeptorkanals zugänglich, während beim kompetitiven Block die Blocksubstanz mit dem eigentlichen Agonisten um dieselbe Bindungsstelle konkurriert. Die Resultate quantitativer Analysen von Blockexperimenten können in reaktionskinetische Schemata integriert werden. Somit kann das Verhalten von nAChR in Anwesenheit verschiedener Blocksubstanzen per Computersimulation quantitativ vorausgesagt werden. Der Einsatz der Patch-clamp-Technik in der Untersuchung der Wirkung von IgG-Fraktionen von Myasthenia-gravis-Patienten auf nAChR konnte eine deutliche funktionelle Blockade der Rezeptoren nachweisen.

Literatur

  • 1 Eccles J C, Katz B, Kuffler S W. Nature of the „endplate potential” in curarized muscle.  J Neurophysiol. 1941;  4 362-387
  • 2 Kandel E R, Siegelbaum S. Übertragung an der neuromuskulären Synapse. In: Kandel ER, Schwartz, JH, Jessell TM (Hrsg) Neurowissenschaften. Heidelberg, Berlin, Oxford; Spektrum Akademischer Verlag 1996
  • 3 Dudel J. Synaptische Übertragung. In: Schmidt RF (Hrsg) Neuro- und Sinnesphysiologie. Berlin, Heidelberg, New York; Springer 1998
  • 4 Franke C, Hatt H, Dudel J. Liquid filament switch for ultrafast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle.  Neurosci Lett. 1987;  77 199-204
  • 5 Dudel J, Franke C, Hatt H. Rapid activation, desensitization and resensitization of synaptic channels on crayfish muscle after glutamate pulses.  Biophys J. 1990;  57 533-545
  • 6 Bufler J, Franke C, Parnas H, Dudel J. Open channel block by physostigmine and procaine in embryonic-like nicotinic receptors of mouse muscle.  Europ J Neurisci. 1996;  8 677-687
  • 7 Krampfl K, Schlesinger F, Dengler R, Bufler J. Pentobarbital has curare-like effects on adult-type nicotinic acetylcholine receptor channel currents.  Anest Analg. 2000;  90 970-974
  • 8 Franke C, Költgen D, Hatt H, Dudel J. Activation and desensitization of embryonic-like receptor channels in mouse muscle by acetylcholine concentration steps.  J Physiol. 1992;  451 145-158
  • 9 Franke C, Parnas H, Hovav G, Dudel J. A molecular scheme for the reaction between acetylcholine and nicotinic channels.  Biophys J. 1993;  64 339-356
  • 10 Bufler J, Fischer P, Pongratz D, Franke C. Electrophysiological characterization of nicotinic receptors of aneurally grown human myotubes.  Neurosci Lett. 1995;  196 73-76
  • 11 Albuquerque E X, Allen C N, Arcava Y, Akaike A, Shaw K P, Rickett D L. Activation and inhibition of the nicotinic receptor: actions of physostigmine, pyridostigmine and meproadifen. In: Hanin I (ed) Dynamics of cholinergic function. New York; Plenum Publishing 1986
  • 12 Jenkinson D H. The antagonism between curare and substances which depolarize the motor endplate.  J Physiol. 1960;  39 309-324
  • 13 Hill A V. The mode of action of nicotine and curare determined by the form of the concentration curve and method of temperature coefficients.  J Physiol. 1909;  39 361-373
  • 14 Colquhoun D, Dreyer F, Sheridan R E. The actions of tubocurarine at the frog neuromuscular junction.  J Physiol. 1979;  293 247-284
  • 15 Bufler J, Wilhelm R, Parnas H, Franke C, Dudel J. Open channel and competitive block of embryonic form of the nicotinic receptor of mouse myotubes by (+)-tubocurarine.  J Physiol. 1996;  495 83-95
  • 16 Toyka K V, Drachmann D B, Pestronk A, Kao I. Myasthenia gravis: passive transfer from man to mouse.  Science. 1975;  190 397-399
  • 17 Jerusalem F, Zierz S. Myasthenia gravis und myasthenische Syndrome. In: Muskelerkrankungen. Stuttgart, New York; Thieme 1991: 292-310
  • 18 Lindstrom J M, Lambert E H. Content of acetylcholine receptors an d antibodies bound to receptor in myasthenia gravis, experimental autoimmune myasthenia gravis and Eaton-Lambert syndrome.  Neurology. 1978;  28 130-138
  • 19 Ashizawa T, Appel S H. Complement-dependent lysis of cultured rat myotubes by myasthenic immunoglobulins.  Neurology. 1985;  35 1748-1753
  • 20 Burges J, Wray D W, Pittighella S, Hall Z, Vincent A. A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplate in vitro.  Muscle Nerve. 1990;  13 407-413
  • 21 Sterz R, Hohlfeld R, Rajki K, Kaul M, Heininger K, Peper K, Toyka K V. Effector mechanisms in myasthenia gravis: endplate function after passive transfer of IgG, Fab, and F(ab')2 hybrid molecules.  Muscle Nerve. 1986;  9 306-312
  • 22 Bufler J, Kahlert S, Tzartos S, Toyka K V, Maelicke A, Franke C. Activation and blockade of mouse muscle nicotinic channels by antibodies directed against the binding site of the acetylcholine receptor.  J Physiol. 1996;  492 107-114
  • 23 Bufler J, Pitz R, Czep M, Wick M, Franke C. Purified IgG from seropositive and seronegative patients with myasthenia gravis reversibly blocks currents through nicotinic acetylcholine receptor channels.  Ann Neurol. 1998;  43 458-464
  • 24 Jahn K, Franke C, Bufler J. Mechanism of block of nicotinic acetylcholine receptor channels by purified IgG from seropositive patients with myasthenia gravis.  Neurology. 2000;  54 474-479
  • 25 Scheller M, Bufler J, Hertle I, Schneck H J, Franke C, Kochs E. Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and closed state.  Anest Analg. 1996;  83 830-836
  • 26 Hertle I, Scheller M, Bufler J, Schneck H J, Stocker M, Kochs E, Franke C. Interaction of midazolam with nicotinic acetylcholine receptor of mouse myotubes.  Anest Analg. 1997;  85 174-181
  • 27 v Loewnich C, Schneck H J, Kochs E, Krampfl K, Bufler J. Open and closed channel block of the nicotinic acetylcholine receptor of mouse myotubes by pancuronium bromide and atracurium besylate.  Europ J Pharmacol. 2001;  413 31-35
  • 28 Scheller M, Bufler J, Schneck H J, Kochs E, Franke C. Isoflurane and sevoflurane interact with the nicotinic acetylcholine receptor in micromolar concentrations.  Anesthesiology. 1997;  86 118-127
  • 29 Goldberg G, Mochly-Rosen D, Fuchs S, Lass Y. Monoclonal antibodies modify acetylcholine-induced ionic channel properties in cultured chick myoballs.  J Membr Biol. 1983;  76 123-128
  • 30 Fels G, Plumer-Wilk R, Schreiber M, Maelicke A. A monoclonal antibody interfering with binding and response of the acetylcholine receptor.  J Biol Chem. 1986;  261 15 746-15 754
  • 31 Maelicke A, Fulpius B W, Klett R P, Reich E. Acetylcholine receptor. Responses to drug binding.  J Biol Chem. 1977;  252 4811-4830
  • 32 Kang S, Maelicke A. Fluorescein isothiocyanate-labeled alpha-cobratoxin. Biochemical characterization and interaction with acetylcholine receptor from Electrophorus electricus.  J Biol Chem. 1980;  255 7326-7332
  • 33 Lang B, Newsom-Davis J, Prior C, Wray D. Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse.  J Physiol. 1983;  344 335-345
  • 34 Sinha S, Newsom-Davis J, Mills K, Byrne N, Lang B, Vincent A. Autoimmune aetiology for acquired neuromyotonia (Isaac's syndrome).  Lancet. 1991;  338 75-77
  • 35 Buchwald B, Weishaupt A, Toyka K V, Dudel J. Immunoglobulin G from a patient with Miller-Fisher syndrome rapidly and reversibly depress evoked quantal release at the neuromuscular junction of mice.  Neurosci Lett. 1995;  201 163-166
  • 36 Buchwald B, Bufler J, Carpo M, Heidenreich F, Pitz R, Dudel J, Nobile-Orazio E, Toyka K V. Combined pre- and postsynaptic action of IgG antibodies in Miller Fisher syndrome.  Neurology. 2001;  56 67-74
  • 37 Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres.  Nature. 1976;  260 799-802
  • 38 Watters D, Maelicke A. Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies.  Biochemistry. 1983;  22 671-679

PD Dr. J. Bufler

Neurologische Klinik · Medizinische Hochschule Hannover

Carl-Neuberg-Straße 1

30623 Hannover