Subscribe to RSS
DOI: 10.1055/s-2001-17523
Selective Hydrolysis of Aliphatic Dinitriles to Monocarboxylic Acids by a Nitrilase from Arabidopsis thaliana [1]
Publication History
Publication Date:
12 August 2004 (online)
Abstract
The hydrolysis of a variety of dinitriles including α,ω-dicyanoalkanes 1, β-substituted glutaronitriles 5, and γ-cyanopimelonitrile 7 with a recombinant plant nitrilase from Arabidopsis thaliana, expressed in E. coli, is described. Conversion rate and selectivity of the hydrolysis of dinitriles 1a-f to ω-cyanocarboxylic acids 2a-f depend on the chain length. The enzyme activity markedly increases from malononitrile (1a) to octanedinitrile (1f). The selectivity, however, does not correlate with the rates. Up to a chain length of 6 C-atoms, the cyanocarboxylic acid is the only product, even at complete conversion of the starting material. Pimelonitrile (1e) is hydrolyzed to the cyanocarboxylic acid 2e without formation of diacid (<1%) up to 73% conversion. Glutaronitriles 5a-c were also hydrolyzed to the corresponding cyanobutanoic acids 6a-c with perfect selectivity. The nitrilase hydrolyzes exclusively the primary cyano group of 7 to give 3,5-dicyanoheptanoic acid (8a), whereby the selectivity is slightly reduced compared to the unsubstituted pimelonitrile (1e). If the hydrolysis is terminated at conversions ≤90%, pure 8a can be isolated in 72% yield (92% referred to conversion). After esterification of 8a to the methyl ester 8b, only the 5-cyano group but not the ester function was hydrolyzed enzymatically to give cyanoheptanedioic acid monoester (10).
Key words
catalysis - enzymes - hydrolyses - nitriles - regioselectivity
- 1 Enzyme catalyzed reactions, Part 41. Part 40:
Effenberger F.Oßwald S. Tetrahedron: Asymmetry 2001, 12: 279 - 2
Oßwald S. Ph.D. Dissertation University of Stuttgart; Germany: 2000. - 3
Gavagan JE.Fager SK.Fallon RD.Folsom PW.Herkes FE.Eisenberg A.Hann EC.DiCosimo R. J. Org. Chem. 1998, 63: 4792 -
4a
Bengis-Garber C.Gutman AL. Tetrahedron Lett. 1988, 29: 2589 -
4b
Bengis-Garber C.Gutman AL. Appl. Microbiol. Biotechnol. 1989, 32: 11 - 5
Kobayashi M.Nagasawa T.Yamada H. Eur. J. Biochem. 1989, 182: 349 - 6
Kobayashi M.Nagasawa T.Yamada H. Appl. Microbiol. Biotechnol. 1988, 29: 231 - 7
Cerbelaud E.Bontoux M.Foray F.Faucher D.Lévy-Schil S.Thibaut D.Soubrier F.Crouzet J.Pétré D. D. Ind. Chem. Libr. 1996, 8: 189 - 8
Bartling D.Seedorf M.Mithöfer A.Weiler FW. Eur. J. Biochem. 1992, 205: 417 - 10
Gresham TL.Jansen JE.Shaver FW.Frederick MR.Fiedorek FT.Bankert RA.Gregory JT.Beears WL. J. Am. Chem. Soc. 1952, 74: 1323 - 11
Pichat L.Mizon J.Herbert M. Bull. Soc. Chim. Fr. 1963, 1792 - 12
Johnson F.Panella JP.Carlson AA. J. Org. Chem. 1962, 27: 2241 - 13
Ghosez J. Bull. Soc. Chim. Belg. 1932, 41: 477 -
14a
Lam LKP.Lui RAHF.Jones JB. J. Org. Chem. 1986, 51: 2047 -
14b
Roy R.Rey AW. Tetrahedron Lett. 1987, 28: 4935 -
14c
Nakada M.Kobayashi S.Ohno M.Iwasaki S.Okuda S. Tetrahedron Lett. 1988, 29: 3951 -
14d
Santaniello E.Chiari M.Ferraboschi P.Trave S. J. Org. Chem. 1988, 53: 1567 -
14e
Boland W.Frößl C.Lorenz M. Synthesis 1991, 1049 - 15
Maddrell SJ.Turner NJ.Kerridge A.Willetts AJ.Crosby J. Tetrahedron Lett. 1996, 37: 6001 - 16
Zahn H.Schäfer P. Chem. Ber. 1959, 92: 736 - 17
deBoer TJ.Backer HJ. Org. Synth. Coll.Vol. 4: 1963, 250 - 18
Stevenson DE.Feng R.Dumas F.Groleau D.Mihoc A.Storer AC. Biotechnol. Appl. Biochem. 1992, 15: 283
References
Oßwald, S.; Wajant, H.; Effenberger, F., in preparation.