Abstract
An efficient BF3·Et2O mediated conversion of Diels-Alder adduct 1 of Danishefsky’s diene and methyl acrylate yielded cyclohexenones 2 and 3. Subsequent reductive amination with several amines using NaBH(OAc)3 in acetic acid medium gave 4-alkylaminocyclohex-1-enecarboxylate derivatives (4a-e) in a concise form.
Key words
aminations - Diels-Alder reactions - enones - reductions - Danishefsky’s diene
References and Notes
1
Quirante J.
Escolano C.
Massot M.
Bonjoch J.
Tetrahedron
1997,
53:
1391
For recent Diels-Alder approaches to functionalized aminocyclohexenes, see:
2a
Huang Y.
Iwama T.
Rawal VH.
J. Am. Chem. Soc.
2000,
122:
7843 , and references cited therein
2b
Wipf P.
Wang X.
Tetrahedron Lett.
2000,
41:
8747
3a
Danishefsky S.
Kitahara T.
J. Org. Chem.
1975,
40:
538
3b
Danishefsky S.
Kitahara T.
Yan CF.
Morris J.
J. Am. Chem. Soc.
1979,
101:
6996
4a
Archer RA.
Blanchard WB.
Day WA.
Johnson DW.
Lavagnino ER.
Ryan CW.
Baldwin JE.
J. Org. Chem.
1977,
42:
2277
4b
Lemmens JM.
Thijs L.
Zwanenburg B.
Tetrahedron
1984,
40:
3331
4c
Moore BS.
Cho H.
Casati R.
Kennedy E.
Reynolds KA.
Mocek U.
Beale JM.
Floss HG.
J. Am. Chem. Soc.
1993,
115:
5254
5
Jung ME.
Rayle HL.
Synth. Commun.
1994,
24:
197
6
Spino C.
Crawford J.
Cui Y.
Gugelchuk M.
J. Chem. Soc., Perkin Trans. 2
1998,
1499
7a
Carter MJ.
Fleming I.
Percival A.
J. Chem. Soc., Perkin Trans. 1
1981,
2415
7b
Kosugi H.
Hoshino K.
Uda H.
Chem. Lett.
1991,
1577
8
Potman RP.
Janssen NJML.
Scheeren JW.
Nivard RJF.
J. Org. Chem.
1984,
49:
3628
9
Audrain H.
Skrydstrup T.
Ulibarri G.
Riche C.
Chiaroni A.
Grierson DS.
Tetrahedron
1994,
50:
1469
10 It is assumed that methanol is eliminated concurrently with the cleavage of the silyl enol ether to the ketone.3b For an interesting study in this field, see: Vorndam PE.
J. Org. Chem.
1990,
55:
3693
11 Conversion of the carboxylic Diels-Alder adducts of Danishefsky’s diene to cyclohexenones has been recently reported using acid catalysts such as Yb(OTf)3, although upon some substrates amounts of the corresponding methoxylated derivatives were also obtained: Inokuchi T.
Okano M.
Miyamoto T.
Madon HB.
Takagi M.
Synlett
2000,
1549
12
Abdel-Magid AF.
Carson KG.
Harris BD.
Maryanoff CA.
Shah RD.
J. Org. Chem.
1996,
61:
3849
13
McGill JM.
Labell ES.
Williams M.
Tetrahedron Lett.
1996,
37:
3977
14
1H NMR (CDCl3, 300 MHz): δ = 1.09-1.28 (m, 2 H, H-2ax, H-6ax), 1.46 (qd, 2 H, J = 13, 3.5 Hz, H-3ax, H-5ax), 2.02 (m, 4 H, H-3, H-5), 2.28 (tt, 1 H, J = 12, 3.5 Hz, H-1), 2.51 (tt, 1 H, J = 11, 3.5 Hz, H-4), 3.66 (s, 3 H, OCH3), 3.82 (s, 2 H, CH2Ar), 7.20-7.40 (m, 5 H, Ar-H); 13C NMR (CDCl3, 75 MHz): δ = 27.7 (C-6, C-2), 32.3 (C-5, C-3), 42.9 (C-1), 51.0 (CH2Ar), 51.6 (OCH3), 55.5 (C-4), 126.9, 128.1, 128.4, 140.2 (Ar), 176.2 (CO).
15 Compounds of this type have recently been used to synthesise 2-iodoanilines: Hegde SG.
Kassim AM.
Kennedy AI.
Tetrahedron
2001,
57:
1689
16
Danishefsky D.
Kitahara T.
Schuda PF.
Org. Synth.
1983,
61:
147