Plant Biol (Stuttg) 2001; 3(6): 592-597
DOI: 10.1055/s-2001-19370
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Many but not all Genes in Chlamydomonas reinhardtii are Regulated by the Circadian Clock

S. Jacobshagen, J. R. Whetstine, J. M. Boling
  • Department of Biology, Western Kentucky University, Bowling Green, KY, USA
Weitere Informationen

Publikationsverlauf

November 1, 2000

October 29, 2001

Publikationsdatum:
02. Januar 2002 (online)

Abstract

Total RNA from autotrophic Chlamydomonas reinhardtii cultures grown in constant dim light and 17 °C constant temperature was subjected to Northern blot analyses. The mRNAs for cytochrome c, β-tubulin, HSP70B (a chloroplastic heat shock protein of the 70 kD family), chloroplastic fructose-bisphosphate aldolase, and GAS3 (a “gamete-specific” protein of unknown function with high expression in gametes but low expression in vegetative cells) each exhibit a clear circadian rhythm in abundance. The rhythms differ significantly in phase and amplitude. The findings show that the genes for cytochrome c and β-tubulin indeed are regulated by the circadian clock, as previously suggested. Experiments with cultures grown at 27 °C instead of 17 °C further revealed that the rhythms in mRNA abundance for HSP70B, chloroplastic aldolase, and GAS3 also occur with a similar period at the higher temperature. Thus, the rhythms conform to the criterion of temperature compensation for the period and therefore represent true circadian rhythms. In contrast, the combined amount of mRNA for ubiquitin 52 amino acid fusion protein and ubiquitin 78 to 81 amino acid fusion protein stays constant under both temperature conditions. Because the combined amount of mRNA for the ubiquitin fusion proteins was previously shown to cycle under diurnal conditions when cell division activity is high, our data suggest a regulation of these genes by the cell division cycle and not the circadian clock. In summary, our data, together with several other reports, suggest that the circadian clock regulates many but not all genes in Chlamydomonas reinhardtii.

References

  • 01 Asamizu,  E.,, Miura,  K.,, Kucho,  K.,, Inoue,  Y.,, Fukuzawa,  H.,, Ohyama,  K.,, Nakamura,  Y.,, and Tabata,  S.. (2000);  Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. .  DNA Res.. 7 305-307
  • 02 Asamizu,  E.,, Nakamura,  Y.,, Sato,  S.,, Fukuzawa,  H.,, and Tabata,  S.. (1999);  A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags.  DNA Res.. 6 369-373
  • 03 Chomczynski,  P., and Sacchi,  N.. (1987);  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal. Biochem.. 162 156-159
  • 04 DeCoursey,  P. J.,, Walker,  J. K.,, and Smith,  S. A.. (2000);  A circadian pacemaker in free-living chipmunks: essential for survival?.  J. Comp. Physiol. [A]. 186 169-180
  • 05 Drzymalla,  C.,, Schroda,  M.,, and Beck,  C. F.. (1996);  Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. .  Plant Mol. Biol.. 31 1185-1194
  • 06 Dunlap,  J. C.. (1999);  Molecular bases for circadian clocks.  Cell. 96 271-290
  • 07 Edmunds,  L. N.. (1988) Cellular and molecular bases of biological clocks. New York; Springer-Verlag
  • 08 Eriksson,  M.,, Villand,  P.,, Gardeström,  P.,, and Samuelsson,  G.. (1998);  Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. .  Plant Physiol.. 116 637-641
  • 09 Finley,  D.,, Bartel,  B.,, and Varshavsky,  A.. (1989);  The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis.  Nature. 338 394-401
  • 10 Fujiwara,  S.,, Ishida,  N.,, and Tsuzuki,  M.. (1996);  Circadian expression of the carbonic anhydrase gene, Cah1, in Chlamydomonas reinhardtii. .  Plant Mol. Biol.. 32 745-749
  • 11 Golden,  S. S.,, Ishiura,  M.,, Johnson,  C. H.,, and Kondo,  T.. (1997);  Cyanobacterial circadian rhythms.  Ann. Rev. Plant Physiol. Plant Mol. Biol.. 48 327-354
  • 12 Gromoff,  E. D. v., and Beck,  C. F.. (1993);  Genes expressed during sexual differentiation of Chlamydomonas reinhardtii. .  Mol. Gen. Genet.. 241 415-421
  • 13 Gromoff,  E. D. v.,, Treier,  U.,, and Beck,  C. F.. (1989);  Three light-inducible heat shock genes of Chlamydomonas reinhardtii. .  Mol. Cell. Biol.. 9 3911-3918
  • 14 Harmer,  S. L.,, Hogenesch,  J. B.,, Straume,  M.,, Chang,  H.-S.,, Han,  B.,, Zhu,  T.,, Wang,  X.,, Kreps,  J. A.,, and Kay,  S. A.. (2000);  Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.  Science. 290 2110-2113
  • 15 Hoffmans-Hohn,  M.,, Martin,  W.,, and Brinkmann,  K.. (1984);  Multiple periodicities in the circadian system of unicellular algae.  Z. Naturforsch.. 39 c 791-800
  • 16 Hwang,  S., and Herrin,  D. L.. (1994);  Control of lhc gene transcription by the circadian clock in Chlamydomonas reinhardtii. .  Plant Mol. Biol.. 26 557-569
  • 17 Hwang,  S.,, Kawazoe,  R.,, and Herrin,  D. L.. (1996);  Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. .  Proc. Natl. Acad. Sci. USA. 93 996-1000
  • 18 Jacobshagen,  S., and Johnson,  C. H.. (1994);  Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundance of cab II, and possibly of β-tubulin and cytochrome c. .  Eur. J. Cell Biol.. 64 142-152
  • 19 Jacobshagen,  S.,, Kindle,  K. L.,, and Johnson,  C. H.. (1996);  Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. .  Plant Mol. Biol.. 31 1173-1184
  • 20 Johnson,  C. H., and Golden,  S. S.. (1999);  Circadian programs in cyanobacteria: adaptiveness and mechanism.  Ann. Rev. Microbiol.. 53 389-409
  • 21 Johnson,  C. H.,, Kondo,  T.,, and Goto,  K.. (1992) Circadian rhythms in Chlamydomonas. . Circadian clocks from cell to human. Hiroshige, T. and Honma, K., eds. Sapporo; Hokkaido University Press pp. 139-155
  • 22 Kampen,  J. v., and Wettern,  M.. (1991);  Ubiquitin-encoding mRNA and mRNA recognized by genes encoding ubiquitin-conjugating enzymes are differentially expressed in division-synchronized cultures of Chlamydomonas reinhardtii. .  Eur. J. Cell Biol.. 55 312-317
  • 23 Lemaire,  S. D.,, Stein,  M.,, Issakidis-Bourguet,  E.,, Keryer,  E.,, Benoit,  V.,, Pineau,  B.,, Gérard-Hirne,  C.,, Miginiac-Maslow,  M.,, and Jacquot,  J.-P.. (1999);  The complex regulation of ferredoxin/thioredoxin-related genes by light and the circadain clock.  Planta. 209 221-229
  • 24 Leu,  S.,, White,  D.,, and Michaels,  A.. (1990);  Cell cycle-dependent transcriptional and post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. .  Biochim. Biophys. Acta. 1049 311-317
  • 25 Matters,  G. L., and Beale,  S. I.. (1995);  Blue-light-regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. .  Plant Physiol.. 109 471-479
  • 26 Memon,  A. R.,, Hwang,  S.,, Deshpande,  N.,, Thompson,  G. A.,, and Herrin,  D. L.. (1995);  Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1.  Plant Mol. Biol.. 29 567-577
  • 27 Nikaido,  S. S., and Johnson,  C. H.. (2000);  Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. .  Photochem. Photobiol.. 71 758-765
  • 28 Nikaido,  S. S.,, Locke,  C. R.,, and Weeks,  D. P.. (1994);  Automated sampling and RNA isolation at room temperature for measurements of circadian rhythms in Chlamydomonas reinhardtii. .  Plant Mol. Biol.. 26 275-284
  • 29 Ouyang,  Y.,, Anderson,  C. R.,, Kondo,  T.,, Golden,  S. S.,, and Johnson,  C. H.. (1998);  Resonating circadian clocks enhance fitness in cyanobacteria.  Proc. Natl. Acad. Sci. USA. 95 8660-8664
  • 30 Salvador,  M. L.,, Klein,  U.,, and Bogorad,  L.. (1993);  Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation.  Plant J.. 3 213-219
  • 31 Salvador,  M. L.,, Klein,  U.,, and Bogorad,  L.. (1998);  Endogenous fluctuations of DNA topology in the chloroplast of Chlamydomonas reinhardtii. .  Mol. Cell. Biol.. 18 7235-7242
  • 32 Schaffer,  R.,, Landgraf,  J.,, Accerbi,  M.,, Simon,  V.,, Larson,  M.,, and Wisman,  E.. (2001);  Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. .  Plant Cell. 13 113-123
  • 33 Schnarrenberger,  C.,, Pelzer-Reith,  B.,, Yatsuki,  H.,, Freund,  S.,, Jacobshagen,  S.,, and Hori,  K.. (1994);  Expression and sequence of the only detectable aldolase in Chlamydomonas reinhardtii. .  Arch. Biochem. Biophys.. 313 173-178
  • 34 Schroda,  M.,, Vallon,  O.,, Wollman,  F.-A.,, and Beck,  C. F.. (1999);  A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition.  Plant Cell. 11 1165-1178
  • 35 Thain,  S. C.,, Hall,  A.,, and Millar,  A. J.. (2000);  Functional independence of circadian clocks that regulate plant gene expression.  Curr. Biol.. 10 951-956
  • 36 Waltenberger,  H.,, Schneid,  C.,, Grosch,  J. O.,, Bareiss,  A.,, and Mittag,  M.. (2001);  Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtii. .  Mol. Genet. Genomics. 265 180-188
  • 37 Zabawinski,  C.,, Van Den Koornhuyse,  N.,, D'Hulst,  C.,, Schlichting,  R.,, Giersch,  C.,, Delrue,  B.,, Lacroix,  J. M.,, Preiss,  J.,, and Ball,  S.. (2001);  Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase.  J. Bacteriol.. 183 1069-1077

S. Jacobshagen

Department of Biology
Western Kentucky University

1 Big Red Way
Bowling Green
KY 42101, USA

eMail: sigrid.jacobshagen@wku.edu

Section Editor: A. Läuchli