References
1a
Ciganek E.
Organic Reactions
Vol. 51:
John Wiley and Sons;
New York:
1997.
p.201
1b
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
1c
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
2a
Perlmutter P.
Teo CC.
Tetrahedron Lett.
1984,
25:
5951
2b
Bertenshaw S.
Kahn M.
Tetrahedron Lett.
1989,
30:
2731
2c
Kundig EP.
Xu LH.
Schnell B.
Synlett
1994,
413
2d
Richter H.
Jung G.
Tetrahedron Lett.
1998,
39:
2729
2e
Yamamoto K.
Takagi M.
Tsuji J.
Bull. Chem. Soc. Jpn.
1988,
61:
319
Quite recently Balan and Adolfsson have reported the facile synthesis of the Baylis-Hillman adducts of N-tosylimines through a three-component reaction of arylaldehydes, tosylamide and a Michael acceptor, see: (f) Balan D.
Adolfsson H.
J. Org. Chem.
2001,
66:
6498
3a
Kim JN.
Lee HJ.
Lee KY.
Kim HS.
Tetrahedron Lett.
2001,
42:
3737
3b
Lee HJ.
Kim HS.
Kim JN.
Tetrahedron Lett.
1999,
40:
4363
3c
Lee HJ.
Seong MR.
Kim JN.
Tetrahedron Lett.
1998,
39:
6223
3d
Genisson Y.
Massardier C.
Gautier-Luneau I.
Greene AE.
J. Chem. Soc., Perkin Trans. 1
1996,
2869
3e
Li G.
Kim SH.
Wei H.-X.
Tetrahedron
2000,
56:
719
3f
Kundig EP.
Xu L.-H.
Romanens P.
Tetrahedron Lett.
1995,
36:
4047
3g
Takagi M.
Yamamoto K.
Tetrahedron
1991,
47:
8869
For the synthesis of N-tosylimines, see:
4a
Jennings WB.
Lovely CJ.
Tetrahedron
1991,
47:
5561
4b
Trost BM.
Marrs C.
J. Org. Chem.
1991,
56:
6468
4c
Boger DL.
Corbett WL.
J. Org. Chem.
1992,
57:
4777
4d
Boger DL.
Corbett WL.
Curran TT.
Kasper AM.
J. Am. Chem. Soc.
1991,
113:
1713
4e
Sisko J.
Weinreb SM.
Tetrahedron Lett.
1989,
30:
3037
4f
Sisko J.
Weinreb SM.
J. Org. Chem.
1990,
55:
393
4g
Georg GI.
Harriman GCB.
Peterson SA.
J. Org. Chem.
1995,
60:
7366
4h
Love BE.
Raje PS.
Williams TCII.
Synlett
1994,
493
5a
Im YJ.
Kim JM.
Mun JH.
Kim JN.
Bull. Korean Chem. Soc.
2001,
22:
349
5b
Drewes SE.
Horn MM.
Ramesar N.
Synth. Commun.
2000,
30:
1045
5c
Basavaiah D.
Kumaragurubaran N.
Tetrahedron Lett.
2001,
42:
477
5d
Basavaiah D.
Kumaragurubaran N.
Sharada DS.
Tetrahedron Lett.
2001,
42:
85
Cyclohexene derivatives were obtained as diastereomeric mixtures from 1e and 1h via the elimination of acetic acid and concomitant Diels-Alder reaction. Diethyl 4-(1-hexenyl)-3-butyl-1-cyclohexene-1,4-dicarboxylate (for 1e) and 4-(1-hexenyl)-3-butyl-1,4-dicyano-1-cyclohexene (for 1h) were isolated in 43% and 48%, respectively, as an oil. For such reactions, see:
6a
Poly W.
Schomburg D.
Hoffmann HMR.
J. Org. Chem.
1988,
53:
3701
6b
Hoffmann HMR.
Eggert U.
Poly W.
Angew. Chem., Int. Ed. Engl.
1987,
26:
1015
6c
Hoffman HMR.
Weichert A.
Slawin AMZ.
Williams DJ.
Tetrahedron
1990,
46:
5591
7 Other nucleophiles can be used in the reaction such as phenols and primary nitroalkanes, which have the similar pKa values as that of tosylamide.
8
Trost BM.
Tsui H.-C.
Toste FD.
J. Am. Chem. Soc.
2000,
122:
3534
9
Typical Procedure for the Formation of 3a: To a stirred solution of the Baylis-Hillman acetate 1a (496 mg, 2.0 mmol) in aq THF (10 mL, H2O-THF, 1:1) was added DABCO (270 mg, 2.4 mmol) and stirred at r.t. for 10 min. To the reaction mixture p-toluenesulfonamide (345 mg, 2.0 mmol) was added and the whole mixture was stirred at 60-70 °C for 48 h. After the usual workup process and column chromatography (SiO2, hexane/ether, 1:1), 3a was obtained as a white solid, 540 mg (75%); mp 100-101 °C (ref.
[2a]
90-92 °C); IR (CH2Cl2): 3289, 1716, 1327, 1161 cm-1; 1H NMR (CDCl3): δ = 1.14 (t, J = 7.2 Hz, 3 H), 2.41 (s, 3 H), 4.04 (q, J = 7.2 Hz, 2 H), 5.30 (d, J = 9.0 Hz, 1 H), 5.65 (d, J = 9.0 Hz, 1 H), 5.81 (s, 1 H), 6.21 (s, 1 H), 7.13-7.69 (m, 9 H); 13C NMR (CDCl3): δ = 13.89, 21.46, 59.12, 60.97, 126.44, 127.21, 127.51, 127.66, 128.49, 129.44, 137.75, 138.75, 138.84, 143.29, 165.27; CIMS: m/z (%) = 189(92), 204(100), 205(15), 360(1) [MH+]. Anal. Calcd for C19H21NO4S: C, 63.49; H, 5.89; N, 3.90. Found: C, 63.32; H, 5.91; N, 3.94.