Abstract
Background: We aimed at assessing the quality
and quantity of protein-leakage across the alveolar-capillary membrane and its
influence on surfactant function during the early neonatal period in preterm
infants compared to newborns both with respiratory failure.
Patients and methods: We therefore
prospectively analyzed total protein, elastase-α1 -proteinase
inhibitor complex (E-α1 -PI) and
α2 -macroglobulin concentrations in tracheal aspirates from 31
infants ≤ 32 weeks gestational age (group
1 : 29.3 ± 2 weeks,
1214 ± 410 g [means ± SEM])
and from 21 neonates > 32 weeks (group
2 : 37.5 ± 3 weeks,
2890 ± 600 g [means ± SEM])
and measured their surface activity in the pulsating bubble surfactometer.
Results: Day 1 total protein and
α2 -macroglobulin levels indicated an initial high leakage that
declined to day 3 in both groups (from 1652 ± 241 to
708 ± 227 mg/l; p < 0.05; resp.
from 28 ± 6 to 12 ± 4 mg/l
[means ± SEM]). In group 2
E-α1 -PI concentrations were significantly elevated at day 1
compared to group 1 (15 754 ± 5766 versus
3320 ± 1056 μg/l
[means ± SEM]). In both groups a high minimum
surface tension (15 - 30 mN/m) was recorded from day
1 - 4.
Conclusions: These results suggest in larger
newborns a secondary surfactant deficiency due to protein-leakage to play an
important role in the pathogenesis of respiratory failure. The increased
alveolar-capillary membrane permeability might be caused by inflammatory
ARDS-like mechanisms.
Zusammenfassung
Hintergrund: Ziel der Studie ist es, das
Ausmaß und die Qualität des Proteineinstroms in den Alveolarraum
durch die alveolokapilläre Membran bei sehr unreifen Frühgeborenen
und reiferen Früh- und Neugeborenen zu vergleichen.
Patienten und Methoden: Im Rahmen einer
prospektiven Studie wurde die
Elastase-α1 -Proteinaseinhibitorkomplex- (E-α1 -PI)
und α2 -Makroglobulinkonzentration in den Trachealaspiraten von
31 Frühgeborenen eines Gestationsalters ≤ 32 Wochen (Gruppe 1:
29,3 ± 2 Wochen; 1214 ± 410 g
[MW ± SEM]) und von 21 reiferen Neugeborenen (Gruppe 2:
37,5 ± 3 Wochen; 2890 ± 600 g
[MW ± SEM]) gemessen. Zusätzlich wurden die
oberflächenaktiven Eigenschaften der Trachealaspirate am „Pulsating
Bubble Surfactometer” gemessen.
Ergebnisse: Die am ersten Lebenstag
gemessenen Gesamtprotein- und α2 -Makroglobulinwerte zeigen eine
initial hohe Leckage, die in beiden Gruppen bis zum 3. Tag signifikant
abfällt (von 1652 ± 241 auf
708 ± 227 mg/l; p < 0,05; bzw. von
28 ± 6 auf 12 ± 4 mg/l
[MW ± SEM]). In Gruppe 2 fanden sich am ersten Lebenstag
signifikant höhere E-α1 -PI-Konzentrationen als in Gruppe 1
(15 754 ± 5766 μg/l bzw.
3320 ± 1056 [means ± SEM]). In beiden
Gruppen wurden innerhalb der ersten 4 Lebenstage hohe
Oberflächenspannungswerte gemessen (γmin nach 150 Zyklen:
1530 mN/m).
Schlussfolgerung: Diese Ergebnisse weisen auf
einen durch surfactantinhibierende Plasmaproteine bedingten sekundären
Surfactantmangel bei reiferen Früh- und Neugeborenen hin. Eine
inflammatorisch induzierte Läsion könnte die erhöhte
Durchlässigkeit der alveolokapillären Membran in dieser Gruppe
erklären.
Key words
Surfactant - alveolar-capillary membrane - elastase - RDS
Schlüsselwörter
Surfactant - alveolokapilläre Membran - Elastase - ANS
Literatur
1
Bachofen H, Schürch S, Urbinelli M, Weibel E R.
Relations among alveolar surface tension, surface area,
volume, and recoil pressure.
J Appl Physiol.
1987;
62
1878-1887
2
Boger C, Yuan H Z, Schultek T, Tegtmeyer K F, Wood W G.
Development and clinical evaluation of immunoluminometric
assays for lactoferrin and elastase-α1 -proteinase inhibitor
complexes in body fluids with special references to bronchoalveolar lavage and
neonatal sepsis.
J Clin Chem Clin Biochem.
1988;
26
645-651
3
Brown S D.
ARDS. History, definitions, and physiology.
Respir Care Clin N Am.
1998;
4
567-582
4
Brus F, van Oeveren W, Okken A, Oetonio S B.
Number and activation of circulating polymorphonuclear
leucocytes and platelets are associated with neonatal respiratory distress
syndrome severity.
Pediatrics.
1997;
99
672-680
5
Couchard M, Polge J, Bomsel F.
Maladie des membranes hyalines. Diagnostic et surveillance
radiologiques. Traitement, complications. Etude radioclinique de 589 cas.
Ann Radiol.
1974;
17
669-683
6
Dargaville P A, South M, Vervaart P, McDougall P N.
Validity of markers of dilution in small volume lung
lavage.
Am J Respir Crit Care Med.
1999;
160
778-784
7
Enhorning G.
Pulsating bubble technique for evaluating pulmonary
surfactant.
J Appl Physiol.
1977;
43
198-203
8
Faix R G, Viscardi R M, DiPietro M A, Nicks J J.
Adult respiratory distress syndrome in full-term
newborns.
Pediatrics.
1989;
83
971-976
9
Friedrich W, Schmalisch G, Haufe M, Kling R, Wauer R R.
Surface tension measurements on pharyngeal and tracheal
aspirate samples from newborns without and with respiratory distress
syndrome.
Biol Neonate.
1996;
70
75-83
10
Fuchimukai T, Fujiwara T, Takahashi A, Enhorning G.
Artiricial pulmonary surfactant inhibited by proteins.
J Appl Physiol.
1987;
62
429-437
11
Gersony W M.
Patent ductus arteriosus in the neonate.
Pediatr Clin North Am.
1986;
33
545-560
12
Gortner L, Bühler S, Weller E.
Biochemical and biophysical evaluation of tracheal aspirates
in preterm infants: Clinical implications.
Pediatr Res.
1992;
32
635A
13
Gortner L, Pohlandt F, Bartmann P.
Effects of bovine surfactant in very low birth weight infants
with congenital pneumonia.
Monatsschr Kinderheilkd.
1990;
138
274-278
14
Gortner L, Pohlandt F, Bartmann P.
Bovine surfactant in full-term neonates with adult
respiratory distress syndrome-like disorders.
Pediatrics.
1994;
93
538
15
Gortner L, Weller E, Raap P, Möller J C, Tegtmeyer F K.
lnhibition of surfactant in-vitro properties by various
proteins.
Pediatr Res.
1994;
36
80A
16
Griese M, Westerburg B.
Surfactant function in neonates with respiratory distress
syndrome.
Respiration.
1998;
65
136-142
17
Groneck P, Götze-Speer B, Oppermann M, Eiffert H, Speer C P.
Association of pulmonary inflammation and increased
micro-vascular permeability during the development of bronchopulmonary
dysplasia: A sequential analysis of inflammatory mediators in respiratory
fluids of high-risk preterm neonates.
Pediatrics.
1994;
93
712-718
18
Günther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, Yabut M, Temmesfeld B, Walmrath D, Morr H, Seeger W.
Surfactant alterations in severe pneumonia, acute respiratory
distress syndrome and cardiogenic lung edema.
Am J Respir Crit Care Med.
1996;
153
176-184
19
Hallman M, Merritt T A, Akino T, Bry K.
Surfactant protein A, phosphatidylcholine, and surfactant
inhibitors in epithelial lining fluid.
Am Rev Respir Dis.
1991;
144
1376-1384
20
Herting E, Gefeller O, Land M, van Sonderen L, Harms K, Robertson B.
Surfactant treatment of neonates with respiratory failure and
group B streptococcal infection(.) Members of the Collaborative European
Multicenter Study Group.
Pediatrics.
2000;
106
957-964
21
Ikegami M, Jacobs H, Jobe A.
Surfactant function in respiratory distress syndrome.
J Pediatr.
1983;
102
443-447
22
Ikegami M, Jobe A H, Tabor B L, Rider E D, Lewis J F.
Lung albumin recovery in surfactant-treated preterm
ventilated lambs.
Am Rev Respir Dis.
1992;
145
1005-1008
23
Jefferies A L, Coates G, O"Brodovich H.
Pulmonary epithelial permeability in hyaline membrane
disease.
N Engl J Med.
1984;
311
1075-1080
24
Jobe A, Jacobs H, Ikegami M, Berry D.
Lung protein leaks in ventilated lambs: effect of gestational
age.
J Appl Physiol.
1985;
58
1246-1251
25
Lotze A, Mitchell B R, Bulas D I, Zola E M, Shalwitz R A, Gunkel J H.
Survanta in term infants study group. Multicenter study of
surfactant (beractant) use in the treatment of term infants with severe
respiratory failure.
J Pediatr.
1998;
132
40-47
26
Merritt T A, Cochrane C G, Holcomb K, Bohl B, Hallman M, Strayer D, Edwards D K, Gluck L.
Elastase and α1 -proteinase inhibitor
activity in tracheal aspirates during respiratory distress syndrome.
J Clin Invest.
1983;
72
656-666
27
Munshi U K, Niu J O, Siddiq M M, Parton L A.
Elevation of interleukin-8 and interleukin-6 precedes the
influx of neutrophils in tracheal aspirates from preterm infants who develop
bronchopulmonary dysplasia.
Pediatr Pulmonol.
1997;
24
331-336
28
Ogawa Y, Shimizu H, Itakura Y, Ohama Y, Arakawa H, Amizuka T, Obata M, Kakinuma R.
Functional pulmonary surfactant deficiency and neonatal
respiratory disorders.
Pediatr Pulmonol.
1999;
18
175-177
29
Papile L A, Burstein J, Burstein R, Koffler H.
Incidence and evolution of subependymal and intraventricular
hemorrhage: A study of infants with birth weights less than 1,500 gm.
J Pediatr.
1978;
92
529-534
30
Parsley E L.
Acute respiratory distress syndrome. Cellular biology and
pathology.
Respir Care Clin N Am.
1998;
4
583-609
31
Pfenninger J, Tschaeppeler H, Wagner B P, Weber J, Zimmerman A.
The paradox of adult respiratory distress syndrome in
neonates.
Pediatr Pulmonol.
1991;
10
18-24
32
Primiano F P, Chatburn R L, Lough M D.
Mean airway pressure: theoretical considerations.
Crit Care Med.
1982;
10
378-383
33
Pugin J, Verghese G, Widmer M C, Matthay M A.
The alveolar space is the site of intense inflammatory and
profibrotic reactions in the early phase of acute respiratory distress
syndrome.
Crit Care Med.
1999;
27
304-312
34
Reiber H.
Kinetics of protein agglomeration. A nephelometric method for
the determination of total protein in biological samples.
J Biochem Biophys Methods.
1983;
7
153-160
35
Roberts J D, Shaul P W.
Advances in the treatment of persistent pulmonary
hypertension of the newborn.
Pediatr Clin North Am.
1993;
40
1983-1004
36
Robertson P A, Sniderman S H, Laros R K, Cowan R, Heilbron D, Goldenberg R L, Iams J D, Creasy R K.
Neonatal morbidity according to gestational age and birth
weight from five tertiary care centers in the United States, 1983 through
1986.
Am J Obstet Gynecol.
1992;
166
1629-1645
37
Schürch S.
Surface tension at low lung volumes: dependence on time and
alveolar size.
Respir Physiol.
1982;
48
339-355
38
Sherman M P, Goetzman B W, Ahlfors C E, Wennberg R P.
Tracheal aspiration and its clinical correlates in the
diagnosis of congenital pneumonia.
Pediatrics.
1980;
65
258-263
39
Soll R F, Dargaville P.
Surfactant for meconium aspiration syndrome in full term
infants.
Cochrane Database Syst Rev.
2000;
CD
002-054
40
Tegtmeyer F K, Maacks S, Wood W C, Wiebicke W.
Elastase-α1-Proteinase Inhibitor and lactoferrin
concentrations in endotracheal aspirates of ventilated newborns.
Pediatr Pulmonol.
1992;
13
90-94
41
Toce S S, Farrel P M, Leavitt L A, Samuels D P, Edwards D K.
Clinical and roentgenographic scoring systems for assessing
bronchopulmonary dysplasia.
Am J Dis Child.
1984;
138
581-585
42
Wang J Y, Yeh T F, Lin Y J, Chen W Y, Lin C H.
Early postnatal dexamethasone therapy may lessen lung
inflammation in premature infants with respiratory distress syndrome on
mechanical ventilation.
Pediatr Pulmonol.
1997;
23
955-981
43
Wiswell T E, Bent R C.
Meconium staining and the meconium aspiration syndrome.
Pediatr Clin North Am.
1993;
40
955-981
1 This research was supported in part by Boehringer-Ingelheim,
Biberach/Riss, Germany.
Eva Landmann
Department of Pediatrics and Neonatology
Pediatric Center
Justus-Liebig-University, Gießen
Feulgenstraße 12
35392 Gießen
Germany
Phone: +49-641-9943410
Fax: +49-641-9943419
Email: Eva.Landmann@paediat.med.uni-giessen.de