References
1a
Dondoni A.
Colombo L. In Advances in the Use of Synthons in Organic Chemistry
Vol. 1:
Dondoni A.
JAI Press Ltd.;
London:
1993.
p.1
1b
Ager DJ. In Umpoled Synthons
Hase TA.
Wiley Interscience;
New York:
1987.
p.19
Selected examples of sulfur-stabilized d1-synthons:
2a
Corey EJ.
Seebach D.
Angew. Chem., Int. Ed. Engl.
1965,
4:
1075 ; Angew. Chem. 1965, 77, 1134
2b
Guanti G.
Banfi L.
Guaragna A.
Narisano E.
J. Chem. Soc., Chem. Commun.
1986,
138
2c
Ogura K.
Tsuruda T.
Takahashi K.
Iida H.
Tetrahedron Lett.
1986,
27:
3665
3a
Colombo L.
Di Giacomo M.
Brusotti G.
Milano E.
Tetrahedron Lett.
1995,
36:
2863
3b
Ager DJ.
East MB.
J. Org. Chem.
1986,
51:
3983
3c
Quintard J.-P.
Elissondo P.
Mouko-Mpegna D.
J. Organomet. Chem.
1983,
251:
175
3d
Quintard J.-P.
Elissondo P.
Jousseaume B.
Synthesis
1984,
495
4a
Magnus P.
Roy G.
Organometallics
1982,
1:
553
4b
Yoshida J.
Matsunaga S.
Isoe S.
Tetrahedron Lett.
1989,
30:
219
4c
Ager DJ.
Gano JE.
Parekh SI.
J. Chem. Soc., Chem. Commun.
1989,
1256
5a
Mandai T.
Yamaguchi M.
Nakayama Y.
Otera J.
Kawada M.
Tetrahedron Lett.
1985,
26:
2675
5b
de Groot A.
Hansen BJ.
Synth. Commun.
1983,
13:
985
5c
Otera J.
Synthesis
1988,
95
6a
Katritzky AR.
Cheng Y.-X.
Yannakopoulou K.
Lue P.
Tetrahedron Lett.
1989,
30:
6657
6b
Katritzky A.
Drewniak-Deyrup M.
Lan X.
Brunner F.
Heterocycl. Chem.
1989,
26:
829
7a
Corey EJ.
Boger DL.
Tetrahedron Lett.
1978,
19:
5
7b
Chikashita H.
Ishibaba M.
Ori K.
Itoh K.
Bull. Chem. Soc. Jpn.
1988,
61:
3637
8a
Dondoni A.
Pure Appl. Chem.
1990,
62:
643
8b
Dondoni A. In Modern Synthetic Methods
Scheffold R.
Helvetica Chimica Acta;
Basel:
1992.
p.377 ; and references cited therein
9
Typical Procedure for the Formylation of Aldehydes: (1S,2RS)- [1-Benzyl-3-(diphenyl-phosphinoyl)-2-hydroxy-3,3-dimethoxy-propyl] carbamic acid benzyl ester(18): To a solution of lithiumdiisopropyl amide (5 mmol) in dry THF (60 mL) was added dimethoxymethyl phosphine oxide (332 mg, 6 mmol) in 20 mL dry THF at -110 °C under nitrogen atmosphere. Two minutes after addition the respective aldehyde 11 (425 mg, 1.5 mmol) in dry THF (20 mL) was added dropwise, followed directly by aq hydrolysis. Once the mixture is warmed up to r.t. it was concentrated in vacuo. After the resulting aq suspension was extracted with dichloromethane (5 ×), the combined organic layers were dried over MgSO4 and evaporated. The residue was purified by column chromatography (silica gel; petroleum ether/ethyl acetate 1:4) to yield the adduct 18 (353 mg, 0.63 mmol, 42%).
Selected spectroscopic data for adduct 18: 1H NMR (200 MHz, CDCl3): δ = 8.12-7.75 (m, 4 H, H-aromat.), 7.55-7.08 (m, 14 H, H-aromat.), 7.05-6.94 (m, 2 H, H-aromat.), 6.08 (d, J = 6.8 Hz, 1 H, OH), 5.08 (d, J = 1.8 Hz, 1 H, NH), 4.96 and 4.82 (2 d, J = 12.5 Hz, 2 H, PhCH2O), 3.90 (m, 2 H, 1-H, 2-H), 3.29 and 3.19 (2 s, 6 H, 2 × OMe), 2.94 (m, 2 H, PhCH2); 13C NMR (100 MHz, CDCl3): δ = 157.2 (s, NCO2), 138.3, 136.7, 133.0, 132.8 (s, C-aromat.), 2 × 132.1, 131.9, 2 × 131.7, 2 × 131.6, 131.5, 131.4, 129.2, 128.6, 128.4, 128.3, 128.2, 2 × 128.1, 2 × 127.8, 126.0 (d, C-aromat.), 103.9 (s, C-3), 74.8 (d, C-2), 66.3 (t, PhCH2O), 60.4 (d, C-1), 52.6 (q, OMe), 51.7 (q, OMe′), 38.2 (t, CH2Ph).
10
Typical Experimental Procedure for the Generation of α-Hydroxy Esters by Proton-induced Fragmentation: Dichloromethane (200 mL) and hydrochloric acid (2 N, 10 mL) were stirred for 10 min. The aq phase was seperated and the acidity (1.5 mmol/L) of the organic phase was determined by titration with 0.1 N NaOH. (2RS,3S)-3-Benzyloxycarbonylamino-2-hydroxy-4-phenyl butyric acid methyl ester(25): Acidic dichloromethane (1.5 mL) was added to a solution of the phosphine oxide 18 (112 mg, 0.2 mmol) in dichloromethane (3 mL). The pure ester 25 was obtained after gel filtration (67 mg, 0.195 mmol, 97.5%).
Selected spectroscopic data for the hydroxy ester: (syn-25); Mp 92 °C (CH2Cl2); [a]23
D +7.9 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.38-7.20 (m, 10 H, H-aromat.), 5.09 (d, J = 8.0 Hz, 1 H, NH), 5.04 (s, 2 H, PhCH2O), 4.33 (dddd, J = 8.9, 8.0, 7.1 and 1.8 Hz, 1 H, 3-H), 4.08 (d, J = 1.8 Hz, 1 H, 2-H), 3.70 (s, 3 H, OMe), 2.94 (s, 1 H, OH), 2.97 and 2.89 (2 × dd, J = 13.2 and 8.9 Hz, J = 13.2 and 7.1 Hz, 2 × 1 H, 4-H, 4-H′); 13C NMR (100 MHz, CDCl3): δ = 174.1 (s, C-1), 155.7 (s, NCO2), 137.2, 136.3 (s, C-aromat.), 129.4, 128.6, 128.5, 128.1, 127.9, 126.7 (d, C-aromat.), 70.1 (d, C-2), 66.8 (t, PhCH2O), 54.7 (d, C-3), 52.9 (q, OMe), 38.3 (t, C-4).
(anti-25); Mp 120 °C (CH2Cl2); [a]22.5
D +73.6, (c 1.0, CHCl3); 1H NMR (200 MHz, CDCl3): δ = 7.40-7.14 (m, 10 H, H-aromat.), 5.12 (d, J = 8.8 Hz, 1 H, NH), 5.05 (s, 2 H, PhCH2O), 4.41 (m, 1 H, 3-H), 4.34 (m, 1 H, 2-H), 3.57 (s, 3 H, OMe), 3.22 (s, 1 H, OH), 2.8 (m, 2 H, 4-H); 13C NMR (50 MHz, CDCl3): δ = 173.0 (s, C-1), 155.9 (s, NCO2), 136.8, 136.3 (d, C-aromat.), 129.4, 128.5, 128.4, 128.1, 128.0, 126.7 (s, C-aromat.), 72.2 (d, C-2), 66.8 (t, PhCH2O), 54.6 (d, C-3), 52.7 (q, OMe), 35.6 (t, C-4).
The absolute and relative configuration of both diastereomers 25 was independently confirmed after t-BuOK-promoted elimination followed by asymmetric dihydroxylation using ADmix-α (affording anti-25) or ADmix-β (affording syn-25). The configuration was determined as described in ref.
[14]
(Scheme
[4]
).
Scheme 4
11 The preparation of aldehyde 11 was achieved according to: Steurer S.
Podlech J.
Eur. J. Org. Chem.
1999,
1551
Reviews on the Horner-Wittig reaction:
12a
Clayden J.
Warren S.
Angew. Chem., Int. Ed. Engl.
1996,
35:
241 ; Angew. Chem. 1996, 108, 261
12b
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
13
van Schaik TAM.
Henzen AV.
van der Gen A.
Tetrahedron Lett.
1983,
24:
1303
14a
Kirschning A.
Dräger G.
Jung A.
Angew. Chem., Int. Ed. Engl.
1997,
36:
253 ; Angew. Chem. 1997, 109, 253
14b
Monenschein H.
Dräger G.
Jung A.
Kirschning A.
Chem. Eur. J.
1999,
5:
2270
15
Sourkouni-Argirusi G.
Kirschning A.
Org. Lett.
2000,
2:
3781