Synthesis 2002(4): 0460-0462
DOI: 10.1055/s-2002-20950
SHORTPAPER
© Georg Thieme Verlag Stuttgart · New York

Application of Lead and Ammonium Formate as a New System for the Synthesis of Azo Compounds

Shankare Gowda, D. Channe Gowda*
Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570 006 India
Fax: +91(82)1421263 ; e-Mail: dcgowda@yahoo.com ;
Further Information

Publication History

Received 15 October 2001
Publication Date:
28 July 2004 (online)

Abstract

Aromatic nitro compounds containing additional reducible substituents such as acid, phenol, halogen, ester functions are reduced to the corresponding symmetrically substituted azo compounds by employing lead and ammonium formate in methanol or tetrahydrofuran or dioxane medium at reflux temperature. The conversion occurs without hydrogenolysis or hydrogenation of -Cl, -OCH3, -OC2H5, -CO2H, moieties, which are prone to undergo reduction. The conversion is reasonably fast, clean and high yielding.

    References

  • 1 Comprehensive Organic Synthesis, Vol. 8 (Reduction)   Trost BM. Fleming I. Pergamon press; Oxford: 1991. 
  • 2 Rylander PN. In Hydrogenation Methods   Academic press; New York: 1985.  p.365 
  • 3 Popp FD. Schultz HP. Chem. Rev.  1962,  62:  19 
  • 4 Harmon RE. Gupta SK. Brown DJ. Chem. Rev.  1973,  73:  21 
  • 5 Johnstone RAW. Wilby AH. Entwistle ID. Chem. Rev.  1985,  85:  129 
  • 6 Gowda DC. Mahesha B. Gowda S. Indian J. Chem.  2001,  40B:  75 
  • 7 Pitts RM. Harison JR. Moody CJ. J. Chem. Soc., Perkin Trans. 1  2001,  955 
  • 8 Banik BK. Suhendra M. Banik I. Becker FF. Synth. Commun.  2000,  30:  3745 
  • 9 Comprehensive Organic Synthesis   Vol. 7 (Oxidation):  Trost BM. Fleming I. Ley SV. Pergamon press; Oxford: 1991. 
  • 10a March J. In Advanced Organic Chemistry   Wiley Eastern Ltd.; New Delhi: 1986.  3rd ed.. p.331 
  • 10b March J. In Advanced Organic Chemistry   Wiley Eastern Ltd.; New Delhi: 1986.  3rd ed.. p.1091 
  • 11 Lindlar H. Helv. Chim. Acta  1952,  35:  446 
  • 12 Lindlar H. Dubuis R. Org. Synth.  1966,  46:  89 
  • 13 Leonard NJ. Swann S. Fuller G. J. Am. Chem. Soc.  1954,  76:  3193 
  • 14 Bergman I. James JC. Trans. Faraday Soc.  1954,  50:  60 
  • 15 Gakenheimer WC. Hartung WH. J. Org. Chem.  1944,  9:  85 
  • 16 Azoo JA. Grimshaw J. J. Chem. Soc. C  1968,  2403 
  • 17 March J. In Advanced Organic Chemistry   Wiley Eastern Ltd.; New Delhi: 1986.  3rd ed. p.345-399  
  • 18 Rondestvedt CS. Johnson TA. Synthesis  1977,  850 
  • 19 Tadros W. Ishak MS. Bassilli E. J. Org. Chem.  1959,  627 
  • 20 Bavin PMG. Can. J. Chem.  1958,  36:  238 
  • 21 Vogel AI. Watling A. Watling J. J. Chem. Educ.  1958,  35:  40 
  • 22 Moore RE. Furst A. J. Org. Chem.  1958,  23:  1504 
  • 23 Hutchins RO. Lamson DW. Rua L. Cynthia M. Bruce M. J. Org. Chem.  1971,  36:  803 
  • 24a Kirk-Othmer . In Encyclopedia of Chemical Technology   4th ed, Vol. 3:  Grant, M. H., John Wiley & Sons; New York: 1992.  p.821-875  
  • 24b March J. In Advanced Organic Chemistry   Wiley Eastern Ltd.; New Delhi: 1986.  3rd ed.. p.177 
  • 24c March J. In Advanced Organic Chemistry   Wiley Eastern Ltd.; New Delhi: 1986.  3rd ed.. p.1156 
  • 25 Dubonosov AD. Galichev SV. Chernoivanov VA. Bren’ VA. Minkin VI. Russ. J. Org. Chem.  2001,  37:  67 
  • 26 Blokhina NI. Shakhkel ’Dyan IV. Atroshchenko YM. Alifanova EN. Gitis SS. Kaminskii AY. Moiseev DV. Russ. J. Org. Chem.  2001,  37:  67 
  • 27 Gowda DC. Gowda ASP. Baba AR. Gowda S. Synth. Commun.  2000,  30:  2889 
  • 28 Gowda DC. Mahesha B. Synth. Commun.  2000,  30:  3639 
  • 29 Ram S. Ehrenkaufer RE. Tetrahedron Lett.  1984,  25:  3415 
  • 30 Vogel’s Textbook of Practical Organic Chemistry, 5th ed   Revised by Furniss BS. Hannaford AJ. Smith PWG. Tatchell AR. ELBS with Longman; Singapore: 1997.  p.1393