Abstract
A new and high yielding synthetic route to monosubstituted cyclotribenzylenes 6 via the cyclocondensation of benzene with a suitably monosubstituted diol 20 , obtained from ozonolysis of the corresponding dibenzosuberene precursor 19 , was developed for the first time! The dibenzosuberene itself could be readily prepared in large quantities from inexpensive starting materials in five steps. Using this synthetic approach, a mono bromosubstituted cyclotribenzylene 12a was synthesized on large scale. Another four monosubstituted cyclotribenzylenes 21 -24 were also prepared either via bromine/lithium exchange followed by subsequent quenching with external electrophiles or a copper mediated reaction with cyanide. These molecules adopt a rigid crown conformation as shown by X-ray analysis and temperature dependent NMR studies. The barrier to inversion is quite high, requiring temperatures well above 120 °C before inversion takes place. Futhermore, such monosubstituted cyclotribenzylenes are planar chiral and after optical resolution, using HPLC, we were able to obtain the first planar chiral C1-symmetric cyclotribenzylenes in form of the optically pure enantiomers of 12a , the CD spectra of which are exact mirror images over the entire spectral range.
Key words
carbocycles - cyclophanes - CD spectroscopy - planar chirality
References 1 Former address: Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany.
2a
Steed JW.
Atwood JL. In Supramolecular Chemistry
Wiley;
Chichester:
2000.
2b
Lehn J.-M. In Supramolecular Chemistry, Concepts and Perspectives
VCH;
Weinheim:
1995.
2c
Vögtle F. In Supramolecular Chemistry
Wiley & Sons;
Chichester:
1991.
3a
Sato T.
Uno K.
J. Chem. Soc., Chem. Commun.
1972,
579
3b
Sato T.
Uno K.
J. Chem. Soc., Perkin Trans. 1
1973,
895
4 For a general review on cyclophanes see: Vögtle F. In Cyclophane Chemistry
Wiley & Sons;
Chichester:
1993.
5
Diedrich F.
Angew. Chem., Int. Ed. Engl.
1988,
27:
362
6 For a comprehensive review on the synthesis and properties of cyclotriveratrylenes see: Collet A.
Tetrahedron
1987,
43:
5725
7 For an extensive review see: Collet A.
Dutasta J.-P.
Lozach B.
Canceil J.
Top. Curr. Chem.
1993,
165:
103
8
Sato T.
Akima T.
Uno K.
J. Chem. Soc., Perkin Trans. 1
1973,
891
9
Yamato T.
Sakaue N.
J. Chem. Res. (M)
1997,
12:
2614
10
Tellenbröker J.
Kuck D.
Angew. Chem. Int. Ed.
1999,
38:
919
For further synthetic approaches to unsubstituted cyclotribenzylene 1 see:
11a
Lee WY.
Sim W.
Choi KD.
J. Chem. Soc., Perkin Trans. 1
1992,
881
11b
Kodomari M.
Taguchi S.
J. Chem. Res. (S)
1996,
240
11c
Yamamoto T.
Sakaue N.
Furusawa T.
Tashiro M.
Surya Prakash GK.
Olah GA.
J. Chem. Res. (S)
1991,
242
11d
Canceill J.
Collet A.
Gottarelli G.
J. Am. Chem. Soc.
1984,
106:
5997
11e
Canceill J.
Collet A.
J. Chem. Soc., Chem. Commun.
1983,
1145
For other similar low yielding multi-step approaches to diol 4 see also:
12a
Lee WY.
Park CH.
Kim YD.
J. Org. Chem.
1992,
57:
4074
12b
Bergmann ED.
Pelchowicz Z.
J. Am. Chem. Soc.
1953,
75:
4281
13
Platzek J.
Snatzke G.
Tetrahedron
1987,
43:
4947
14 A related approach was used by Renaud and coworkers. However, their route requires four steps and was rather low yielding with 58% yield at best: Renaud RN.
Layton RB.
Fraser RR.
Can. J. Chem.
1973,
51:
3380
15 This is in accordance with other reports in the literature; see e.g. for a double nitration of dibenzosuberenone: Campbell TW.
Ginsig R.
Schmid H.
Helv. Chim. Acta
1953,
36:
1489
16
Gringauz A. In Medicinal Chemistry
Wiley-VCH;
New York:
1997.
17a
Thompson WJ.
Anderson S.
Britcher SF.
Lyle TA.
Thies JE.
J. Med. Chem.
1990,
33:
789
17b
Weiler-Feilchenfeld H.
Solomonovici A.
J. Chem. Soc. B
1971,
869
17c
Jung ME.
Miller SJ.
J. Am. Chem. Soc.
1981,
103:
1984
17d
Inoue J.
Cui Y.-S.
Rodriguez L.
Chen Z.
Kador PF.
Eur. J. Med. Chem. Chim. Ther.
1999,
34:
399
A regioisomer of this compound had been prepared earlier by Renaud in a very low yielding 12 step synthesis:
18a
Fraser RR.
Renaud RN.
Can. J. Chem.
1971,
49:
746
18b
Renaud RN.
Bovenkamp JW.
Fraser RR.
Capoor R.
Can. J. Chem.
1977,
55:
2642
19a
Engelhardt EL.
Zell HC.
Saari WS.
Christy ME.
Colton CD.
Stone CA.
Stavorski JM.
Wenger HC.
Ludden CT.
J. Med. Chem.
1965,
8:
829
19b
Remy DC.
Rittle KE.
Hunt CA.
Anderson PS.
Arison BH.
Engelhardt EL.
Hirschmann R.
Clineschmidt BV.
Lotti VJ.
Bunting PR.
Ballentine RJ.
Papp NL.
Flataker L.
Witoslawski JJ.
Stone CA.
J. Med. Chem.
1977,
20:
1013
19c
Davis DA.
de Paulis T.
Janowsky A.
Smith HE.
J. Med. Chem.
1990,
33:
809
20
Mikotic-Mihun Z.
Dogan J.
Litvic M.
Cepanec I.
Karminski-Zamola GM.
Synth. Commun.
1998,
28:
2191
21
Manning C.
McClory MR.
McCullough JJ.
J. Org. Chem.
1981,
46:
919
22a
Slates HL.
Wendler NL.
J. Med. Chem.
1965,
8:
886
22b
Looker JJ.
J. Org. Chem.
1966,
31:
3599
23 Wendler NL, Taub D, and Hoffsommer RD. inventors; U. S. Patent 2,247,272. In analogy to a patented procedure:
24 LiAlH4 even in equimolar amounts at low temperatures caused substantial debromination and gave only 23%, at most, of the desired bromosubstituted diol 20 . Other reducing agents such as sodium boronate or lithium boronate only gave complex product mixtures in which the desired diol 20 was only present in small amounts (according to TLC and GC-MS analysis), no matter which reaction conditions we tried (e.g. by variation of temperature and solvent, respectively). Borane in THF did not react at all.
For various reductive work-up procedures after ozonolysis see:
25a
Thiem J. In Houben-Weyl: Methoden der Organischen Chemie
Vol. VI/1a:
Thieme;
Stuttgart:
1980.
p.853
25b For the use of lithium boronate see also: Brown HC.
Narasimhan S.
Choi YM.
J. Org. Chem.
1982,
47:
4702
26
Flippin LA.
Gallagher DW.
Jalali-Araghi K.
J. Org. Chem.
1989,
54:
1430
27a
Canceill J.
Collet A.
Gotarelli G.
Plamieri P.
J. Am. Chem. Soc.
1987,
109:
6454
27b
Canceill J.
Collet A.
New J. Chem.
1986,
10:
17
27c
Canceill J.
Lacombe L.
Collet A.
J. Am. Chem. Soc.
1985,
107:
6993
27d
Canceill J.
Collet A.
Gabard J.
Gotarelli G.
Spada GP.
J. Am. Chem. Soc.
1985,
107:
1299
27e
Collet A.
J. Am. Chem. Soc.
1981,
103:
5912