Abstract
A new and high yielding synthetic route to monosubstituted cyclotribenzylenes 6 via the cyclocondensation of benzene with a suitably monosubstituted diol 20 , obtained from ozonolysis of the corresponding dibenzosuberene precursor 19 , was developed for the first time! The dibenzosuberene itself could be readily prepared
in large quantities from inexpensive starting materials in five steps. Using this
synthetic approach, a mono bromosubstituted cyclotribenzylene 12a was synthesized on large scale. Another four monosubstituted cyclotribenzylenes 21 -24 were also prepared either via bromine/lithium exchange followed by subsequent quenching
with external electrophiles or a copper mediated reaction with cyanide. These molecules
adopt a rigid crown conformation as shown by X-ray analysis and temperature dependent
NMR studies. The barrier to inversion is quite high, requiring temperatures well above
120 °C before inversion takes place. Futhermore, such monosubstituted cyclotribenzylenes
are planar chiral and after optical resolution, using HPLC, we were able to obtain
the first planar chiral C1-symmetric cyclotribenzylenes in form of the optically pure
enantiomers of 12a , the CD spectra of which are exact mirror images over the entire spectral range.
Key words
carbocycles - cyclophanes - CD spectroscopy - planar chirality
References <A NAME="RT01102SS-1">1 </A>
Former address: Institut für Organische Chemie, Universität zu Köln, Greinstrasse
4, 50939 Köln, Germany.
<A NAME="RT01102SS-2A">2a </A>
Steed JW.
Atwood JL. In Supramolecular Chemistry
Wiley;
Chichester:
2000.
<A NAME="RT01102SS-2B">2b </A>
Lehn J.-M. In Supramolecular Chemistry, Concepts and Perspectives
VCH;
Weinheim:
1995.
<A NAME="RT01102SS-2C">2c </A>
Vögtle F. In Supramolecular Chemistry
Wiley & Sons;
Chichester:
1991.
<A NAME="RT01102SS-3A">3a </A>
Sato T.
Uno K.
J. Chem. Soc., Chem. Commun.
1972,
579
<A NAME="RT01102SS-3B">3b </A>
Sato T.
Uno K.
J. Chem. Soc., Perkin Trans. 1
1973,
895
<A NAME="RT01102SS-4">4 </A> For a general review on cyclophanes see:
Vögtle F. In Cyclophane Chemistry
Wiley & Sons;
Chichester:
1993.
<A NAME="RT01102SS-5">5 </A>
Diedrich F.
Angew. Chem., Int. Ed. Engl.
1988,
27:
362
<A NAME="RT01102SS-6">6 </A> For a comprehensive review on the synthesis and properties of cyclotriveratrylenes
see:
Collet A.
Tetrahedron
1987,
43:
5725
<A NAME="RT01102SS-7">7 </A> For an extensive review see:
Collet A.
Dutasta J.-P.
Lozach B.
Canceil J.
Top. Curr. Chem.
1993,
165:
103
<A NAME="RT01102SS-8">8 </A>
Sato T.
Akima T.
Uno K.
J. Chem. Soc., Perkin Trans. 1
1973,
891
<A NAME="RT01102SS-9">9 </A>
Yamato T.
Sakaue N.
J. Chem. Res. (M)
1997,
12:
2614
<A NAME="RT01102SS-10">10 </A>
Tellenbröker J.
Kuck D.
Angew. Chem. Int. Ed.
1999,
38:
919
For further synthetic approaches to unsubstituted cyclotribenzylene 1 see:
<A NAME="RT01102SS-11A">11a </A>
Lee WY.
Sim W.
Choi KD.
J. Chem. Soc., Perkin Trans. 1
1992,
881
<A NAME="RT01102SS-11B">11b </A>
Kodomari M.
Taguchi S.
J. Chem. Res. (S)
1996,
240
<A NAME="RT01102SS-11C">11c </A>
Yamamoto T.
Sakaue N.
Furusawa T.
Tashiro M.
Surya Prakash GK.
Olah GA.
J. Chem. Res. (S)
1991,
242
<A NAME="RT01102SS-11D">11d </A>
Canceill J.
Collet A.
Gottarelli G.
J. Am. Chem. Soc.
1984,
106:
5997
<A NAME="RT01102SS-11E">11e </A>
Canceill J.
Collet A.
J. Chem. Soc., Chem. Commun.
1983,
1145
For other similar low yielding multi-step approaches to diol 4 see also:
<A NAME="RT01102SS-12A">12a </A>
Lee WY.
Park CH.
Kim YD.
J. Org. Chem.
1992,
57:
4074
<A NAME="RT01102SS-12B">12b </A>
Bergmann ED.
Pelchowicz Z.
J. Am. Chem. Soc.
1953,
75:
4281
<A NAME="RT01102SS-13">13 </A>
Platzek J.
Snatzke G.
Tetrahedron
1987,
43:
4947
<A NAME="RT01102SS-14">14 </A> A related approach was used by Renaud and coworkers. However, their route requires
four steps and was rather low yielding with 58% yield at best:
Renaud RN.
Layton RB.
Fraser RR.
Can. J. Chem.
1973,
51:
3380
<A NAME="RT01102SS-15">15 </A> This is in accordance with other reports in the literature; see e.g. for a double
nitration of dibenzosuberenone:
Campbell TW.
Ginsig R.
Schmid H.
Helv. Chim. Acta
1953,
36:
1489
<A NAME="RT01102SS-16">16 </A>
Gringauz A. In Medicinal Chemistry
Wiley-VCH;
New York:
1997.
<A NAME="RT01102SS-17A">17a </A>
Thompson WJ.
Anderson S.
Britcher SF.
Lyle TA.
Thies JE.
J. Med. Chem.
1990,
33:
789
<A NAME="RT01102SS-17B">17b </A>
Weiler-Feilchenfeld H.
Solomonovici A.
J. Chem. Soc. B
1971,
869
<A NAME="RT01102SS-17C">17c </A>
Jung ME.
Miller SJ.
J. Am. Chem. Soc.
1981,
103:
1984
<A NAME="RT01102SS-17D">17d </A>
Inoue J.
Cui Y.-S.
Rodriguez L.
Chen Z.
Kador PF.
Eur. J. Med. Chem. Chim. Ther.
1999,
34:
399
A regioisomer of this compound had been prepared earlier by Renaud in a very low yielding
12 step synthesis:
<A NAME="RT01102SS-18A">18a </A>
Fraser RR.
Renaud RN.
Can. J. Chem.
1971,
49:
746
<A NAME="RT01102SS-18B">18b </A>
Renaud RN.
Bovenkamp JW.
Fraser RR.
Capoor R.
Can. J. Chem.
1977,
55:
2642
<A NAME="RT01102SS-19A">19a </A>
Engelhardt EL.
Zell HC.
Saari WS.
Christy ME.
Colton CD.
Stone CA.
Stavorski JM.
Wenger HC.
Ludden CT.
J. Med. Chem.
1965,
8:
829
<A NAME="RT01102SS-19B">19b </A>
Remy DC.
Rittle KE.
Hunt CA.
Anderson PS.
Arison BH.
Engelhardt EL.
Hirschmann R.
Clineschmidt BV.
Lotti VJ.
Bunting PR.
Ballentine RJ.
Papp NL.
Flataker L.
Witoslawski JJ.
Stone CA.
J. Med. Chem.
1977,
20:
1013
<A NAME="RT01102SS-19C">19c </A>
Davis DA.
de Paulis T.
Janowsky A.
Smith HE.
J. Med. Chem.
1990,
33:
809
<A NAME="RT01102SS-20">20 </A>
Mikotic-Mihun Z.
Dogan J.
Litvic M.
Cepanec I.
Karminski-Zamola GM.
Synth. Commun.
1998,
28:
2191
<A NAME="RT01102SS-21">21 </A>
Manning C.
McClory MR.
McCullough JJ.
J. Org. Chem.
1981,
46:
919
<A NAME="RT01102SS-22A">22a </A>
Slates HL.
Wendler NL.
J. Med. Chem.
1965,
8:
886
<A NAME="RT01102SS-22B">22b </A>
Looker JJ.
J. Org. Chem.
1966,
31:
3599
<A NAME="RT01102SS-23">23 </A>
Wendler NL,
Taub D, and
Hoffsommer RD. inventors; U. S. Patent 2,247,272. In analogy to a patented procedure:
<A NAME="RT01102SS-24">24 </A>
LiAlH4 even in equimolar amounts at low temperatures caused substantial debromination and
gave only 23%, at most, of the desired bromosubstituted diol 20 . Other reducing agents such as sodium boronate or lithium boronate only gave complex
product mixtures in which the desired diol 20 was only present in small amounts (according to TLC and GC-MS analysis), no matter
which reaction conditions we tried (e.g. by variation of temperature and solvent,
respectively). Borane in THF did not react at all.
For various reductive work-up procedures after ozonolysis see:
<A NAME="RT01102SS-25A">25a </A>
Thiem J. In Houben-Weyl: Methoden der Organischen Chemie
Vol. VI/1a:
Thieme;
Stuttgart:
1980.
p.853
<A NAME="RT01102SS-25B">25b </A> For the use of lithium boronate see also:
Brown HC.
Narasimhan S.
Choi YM.
J. Org. Chem.
1982,
47:
4702
<A NAME="RT01102SS-26">26 </A>
Flippin LA.
Gallagher DW.
Jalali-Araghi K.
J. Org. Chem.
1989,
54:
1430
<A NAME="RT01102SS-27A">27a </A>
Canceill J.
Collet A.
Gotarelli G.
Plamieri P.
J. Am. Chem. Soc.
1987,
109:
6454
<A NAME="RT01102SS-27B">27b </A>
Canceill J.
Collet A.
New J. Chem.
1986,
10:
17
<A NAME="RT01102SS-27C">27c </A>
Canceill J.
Lacombe L.
Collet A.
J. Am. Chem. Soc.
1985,
107:
6993
<A NAME="RT01102SS-27D">27d </A>
Canceill J.
Collet A.
Gabard J.
Gotarelli G.
Spada GP.
J. Am. Chem. Soc.
1985,
107:
1299
<A NAME="RT01102SS-27E">27e </A>
Collet A.
J. Am. Chem. Soc.
1981,
103:
5912