Subscribe to RSS
DOI: 10.1055/s-2002-25045
Stammzellbiotechnologie - Revolution etablierter Therapieverfahren?
Publication History
Publication Date:
12 April 2002 (online)
1 Einleitung
Die Diskussion über die Stammzellbiologie und deren Möglichkeiten und Grenzen gehören derzeit zu den kontroversen Themen in den Grundlagenwissenschaften, der Medizin, der Politik und der breiten Gesellschaft. Aktuelle Erkenntnisse und Techniken in der Zell- und Molekularbiologie eröffnen prinzipiell neue Möglichkeiten, verschiedenartige Zellen und Gewebe zu erzeugen sowie bisher unverstandene Entwicklungsprozesse der Gewebeentstehung und Organogenese sowie deren Erhaltung und Regeneration näher zu untersuchen. Für die Medizin könnten sich durch den Einsatz embryonaler und somatischer Stammzellen, neue kausale Behandlungsstrategien für bisher nur begrenzt therapierbare Erkrankungen ergeben. Offen bleibt derzeit, welcher therapeutische Nutzen von diesen neuen Methoden erwartet werden darf und welche medizinischen, ethischen und rechtlichen Gesichtspunkte bei deren Anwendung am Menschen zu bedenken sind.
Inhaltsverzeichnis 1 Einleitung … 24 2 Was sind Stammzellen? … 25 3 Entwicklung von Stammzellsystemen während der Ontogenese … 26 4 Stammzelltypen … 26 4.1 Embryonale Stammzellen (ES-Zellen) … 26 4.2 Somatische (adulte) Stammzellen … 28 4.2.1 Hämatopoetische Stammzellen … 28 4.2.2 Neuronale Stammzellen … 29 4.2.3 Mesenchymale Stammzellen … 29 5 Plastizität somatischer Stammzellen … 30 6 Anwendung der Stammzellbiologie in der HNO-Heilkunde … 31 6.1 Mögliche Bedeutung der Stammzellbiologie für die HNO-Heilkunde am Beispiel des Innenohres … 31 6.1.1 Bedeutung neurotropher Faktoren und anderer Molekülefür Differenzierung und Funktionserhalt cochleärer Zellen … 31 6.1.2 Ist eine Regeneration sensorischer und neuraler cochleärer Zellen aus Stammzellen vorstellbar? … 33 6.1.3 Möglichkeiten zur Erzeugung autologer Stammzellen 6.2 Ersatz anderer Gewebe im Kopf-Hals-Bereich aus Stammzellen … 35 7 Ethisch-rechtliche Gesichtspunkte … 35 8 Entscheidende wissenschaftliche Fragen … 35 9 Ausblick … 36 10 Literatur … 36
Der erwachsene Säugetierorganismus setzt sich aus etwa 200 verschiedenen, hoch spezialisierten Zelltypen zusammen, die zum Teil nur sehr bedingt zur Regeneration fähig sind. Stammzellen bilden und erhalten eine Vielzahl dieser Zellen und gewährleisten somit die Homöostase vieler Gewebe und Organe. Während der Embryonal- und Fetalentwicklung bilden Stammzellen durch Differenzierung zu spezialisierten Effektorzellen den entstehenden Organismus. Die toti- und pluripotenten Zellen des Embryos besitzen ein breites Entwicklungspotenzial, das nach bisheriger Lehrmeinung bei den somatischen Stammzellen adulter Gewebe größtenteils verloren gegangen ist. Im Gegensatz zu Salamandern, bei denen nach Amputation komplett neue Gliedmaßen gebildet werden, ist diese Fähigkeit bei den höher entwickelten Säugern nicht mehr ausgebildet. Beim Säuger wurden adulte Stammzellen beispielsweise im Knochenmark, im Darm, in der Haut, im Muskel und auch im Gehirn nachgewiesen. Diese gewebespezifischen Stammzellen können differenzierte Zellen ihres Ursprungsgewebes regenerieren.
Neuere Daten zeigen jedoch ein modifiziertes Bild, das auch Stammzellen aus adulten Geweben überraschend große Entwicklungsfähigkeiten zuweist. So können neurale und Muskelstammzellen Blutzellen bilden, während Blutstammzellen in vivo Gehirn- und Muskelzellen erzeugen können. Dies zeigt, dass gewebespezifische Stammzellen ein erstaunlich großes Entwicklungs- und Differenzierungspotenzial besitzen, wobei jedoch unklar ist, wie ausgedehnt die Entwicklungsfähigkeiten adulter Stammzellen wirklich sind und welche Mechanismen die Bildung gewebefremder Zelltypen unterstützen.
In der vorliegenden Arbeit soll ein Überblick über den aktuellen Kenntnisstand der Biologie embryonaler und somatischer Stammzellen gegeben und auf eine mögliche Nutzung als Ausgangszellen für regenerative Zellsysteme in der Medizin, insbesondere in der Hals-Nasen-Ohrenheilkunde, eingegangen werden.
10 Literatur
- 1 Potten C S, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990; 110 1001-1020
- 2 Dym M. Spermatogonial stem cells of the testis. Proc Natl Acad Sci USA. 1994; 91 11 287-11 289
- 3 Lavker R M, Miller S, Wilson C, Cotsarelis G, Wei Z G, Yang J S, Sun T T. Hair follicle stem cells: their location, role in hair cycle, and involvement in skin tumor formation. Journal of Investigative Dermatology. 1993; 101 16S-26S
- 4 Graziadei P P, Monti Graziadei G A. Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. Journal of Neurocytology. 1980; 9 145-162
- 5 Gage F H. Mammalian neural stem cells. Science. 2000; 287 1433-1438
- 6 Weissman I. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000; 100 157-168
- 7 Sigal S H, Brill S, Fiorino A S, Reid L M. The liver as a stem cell and lineage system. American Journal of Physiology. 1992; 263 G139-148
-
8 Loeffler M, Potten C S.
Stem cells and cellular pedigrees - a conceptual introduction. In: Potten CS, ed Stem cells. London; Academic Press 1997: 1-27 - 9 Whetton A D, Graham G J. Homing and mobilization in the stem cell niche. Trends Cell Biol. 1999; 9 233-238
- 10 Huang S, Law P, Francis K, Palsson B O, Ho A D. Symmetry of Initial Cell Divisions Among Primitive Hematopoietic Progenitors Is Independent of Ontogenic Age and Regulatory Molecules. Blood. 1999; 94 2595-2604
- 11 Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000; 95 2284-2288
- 12 Qian X, Goderie S K, Shen Q, Stern J H, Temple S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development. 1998; 125 3143-3152
- 13 Bonifer C, Faust N, Geiger H, Müller A M. Developmental changes in the differentiation capacity of haematopoietic stem cells. Immunology Today. 1998; 19 236-241
- 14 Qian X, Shen Q, Goderie S K, He W, Capela A, Davis A A, Temple S. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron. 2000; 28 69-80
- 15 Kirchhof N, Harder F, Petrovic S, Kreutzfeldt S, Schmittwolf C, Dürr M, Mühl B, Merkel A, Müller A M. Developmental potential of hematopoietic and neural stem cells: unique or all the same?. Cells Tissues Organs (in press). 2002;
- 16 Phillips R L, Ernst R E, Brunk B, Ivanova N, Mahan M A, Deanehan J K, Moore K A, Overton G C, Lemischka I R. The genetic program of hematopoietic stem cells. Science. 2000; 288 1635-1640
- 17 Geschwind D H, Ou J, Easterday M C, Dougherty J D, Jackson R L, Chen Z, Antoine H, Terskikh A, Weissman I L, Nelson S F, Kornblum H I. A genetic analysis of neural progenitor differentiation. Neuron. 2001; 29 325-339
- 18 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292 154-156
- 19 Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981; 78 7634-7638
- 20 Dani C, Smith A G, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci. 1997; 110 1279-1285
- 21 Müller A M, Dzierzak E A. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. Development. 1993; 118 1343-1351
- 22 Kramer J, Hegert C, Guan K, Wobus A M, Müller P K, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev. 2000; 92 193-205
- 23 Brustle O, Spiro A C, Karram K, Choudhary K, Okabe S, McKay R D. In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA. 1997; 94 14 809-14 814
- 24 Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001; 292 1389-1394
- 25 Capecchi M R. Altering the genome by homologous recombination. Science. 1988; 244 1288-1292
- 26 Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282 1145-1147
- 27 Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton D A, Benvenisty N. From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2000; 97 11 307-11 312
- 28 Müller A M, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994; 1 291-301
- 29 Okada S, Nakauchi H, Nagayoshi K, Nishikawa S-I, Miura Y, Suda T. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood. 1992; 80 3044-3050
- 30 Fong G-H, Rossant J, Gertsenstein M, Breitman M L. Role of Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995; 376 66-71
- 31 Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt F W, Orkin S H. The T cell leukemia oncoprotein SCL/tal-1 is essential for the development of all hematopoietic lineages. Cell. 1996; 86 47-57
- 32 Hirsch E, Iglesias A, Potocnik A J, Hartmann U, Fässler R. Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature. 1996; 380 171-175
- 33 Arroyo A G, Yang J T, Rayburn H, Hynes R O. Differential requirements for α4 Integrins during Fetal and Adult Hematopoieis. Cell. 1996; 85 997-1008
- 34 Escary J L, Perreau J, Dumenil D, Ezine S, Brulet P. Leukemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993; 363 361-364
- 35 Bernad A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos J C. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity. 1994; 1 725-731
- 36 Bhatia M, Wang J CY, Kapp U, Bonnet D, Dick J E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA. 1997; 94 5320-5325
- 37 Ziegler B L, Valtieri M, Porada G A, de Maria R, Müller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani E D, Peschle C. KDR receptor: a key marker defining hematopoietic stem cells. Science. 1999; 285 1553-1558
- 38 Weissman I L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000; 287 1442-1446
- 39 McKay R. Stem cells in the central nervous system. Science. 1997; 276 66-71
- 40 Reynolds B A, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992; 255 1707-1710
- 41 Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994; 13 1071-1082
- 42 Davis A A, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature. 1994; 372 263-266
- 43 Dorrell C, Gan O I, Pereira D S, Hawley R G, Dick J E. Expansion of human cord blood CD34(+)CD38(-) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood. 2000; 95 102-110
- 44 Gritti A, Parati E A, Cova L, Frohlichsthal P, Galli R, Wanke E, Faravelli L, Morassutti D J, Roisen F, Nickel D D, Vescovi A L. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. Journal of Neurosciences. 1996; 16 1091-1100
- 45 Kempermann G, Kuhn H G, Gage F H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997; 386 493-495
- 46 Friedenstein A J, Gorskaja J F, Kulagina N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976; 4 267-274
- 47 Fuchs E, Segre J A. Stem cells: a new lease on life. Cell. 2000; 100 143-155
- 48 Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284 143-147
- 49 Geiger H, Sick S, Bonifer C, Müller A M. Globin gene expression is reprogrammed in chimeras generated by injecting adult hematopoietic stem cells into mouse blastocysts. Cell. 1998; 93 1055-1065
- 50 Bjornson C RR, Rietze R L, Reynolds B A, Magli M C, Vescovi A L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999; 283 534-537
- 51 Galli R, Borello U, Gritti A, Minasi M G, Bjornson C, Coletta M, Mora M, de Angelis M G, Fiocco R, Cossu G, Vescovi A L. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci. 2000; 3 986-991
- 52 Gussoni E, Soneoka Y, Strickland C D, Buzney E A, Khan M K, Flint A F, Kunkel L M, Mulligan R C. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999; 401 390-394
- 53 Jackson K A, Mi T, Goodell M A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA. 1999; 96 14 482-14 486
- 54 Petersen B E, Bowen W C, Patrene K D, Mars W M, Sullivan A K, Muras E N, Boggs S S, Greenberger J S, Goff J P. Bone marrow as a potential source of hepatic oval cells. Science. 1999; 284 1168-1170
- 55 Eglitis M A, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA. 1997; 94 4080-4085
- 56 Mezey E, Chandross K J, Harta G, Maki R A, McKercher S R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000; 290 1779-1782
- 57 Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson S M, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine D M, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410 701-705
- 58 Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman I L, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000; 6 1229-1234
- 59 Gleich O, Dooling R J, Presson J C. Evidence for supporting cell proliferation and hair cell differentiation in the basilar papilla of adult Belgian Waterslager canaries (Serinus canarius). J Comp Neurol. 1997; 377 5-14
- 60 Stone J S, Rubel E W. Cellular studies of auditory hair cell regeneration in birds. Proc Natl Acad Sci USA. 2000; 97 11 714-11 721
- 61 Rivolta M N, Grix N, Lawlor P, Ashmore J F, Jagger D J, Holley M C. Auditory hair cell precursors immortalized from the mammalian inner ear. Proc R Soc Lond B Biol Sci. 1998; 265 1595-1603
- 62 Weir J, Rivolta M, Holley M. Identification of differentiating cochlear hair cells in vitro. Am J Otol. 2000; 21 130-134
- 63 Merlio J P, Ernfors P, Jaber M, Persson H. Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience. 1992; 51 513-532
- 64 Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res. 1994; 75 131-144
- 65 Luo L, Koutnouyan H, Baird A, Ryan A F. Acidic and basic FGF mRNA expression in the adult and developing rat cochlea. Hear Res. 1993; 69 182-193
- 66 Ernfors P, Duan M L, ElShamy W M, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med. 1996; 2 463-467
- 67 Staecker H, Kopke R, Malgrange B, Lefebvre P, van de Water T R. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport. 1996; 7 889-894
- 68 Staecker H, Gabaizadeh R, Federoff H, van de Water T R. Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg. 1998; 119 7-13
- 69 Ernfors P, Lee K F, Kucera J, Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell. 1994; 77 503-512
- 70 Jones K R, Farinas I, Backus C, Reichardt L F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell. 1994; 76 989-999
- 71 Dazert S, Baird A, Ryan A F. Receptor-targeted delivery of an intracellular toxin to outer hair cells by fibroblast growth factor. Hear Res. 1998; 115 143-148
- 72 Low W, Dazert S, Baird A, Ryan A F. Basic fibroblast growth factor (FGF-2) protects rat cochlear hair cells in organotypical culture from aminoglycoside injury. J Cell Physiol. 1996; 167 443-450
- 73 Pirvola U, Cao Y, Oellig C, Suoqiang Z, Pettersson R F, Ylikoski J. The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea. Proc Natl Acad Sci USA. 1995; 92 9269-9273
- 74 Dazert S, Kim D, Luo L, Aletsee C, Garfunkel S, Maciag T, Baird A, Ryan A F. Focal delivery of fibroblast growth factor-1 by transfected cells induces spiral ganglion neurite targeting in vitro. J Cell Physiol. 1998; 177 123-129
- 75 Woolf N K, Koehrn F J, Ryan A F. Immunohistochemical localization of fibronectin-like protein in the inner ear of the developing gerbil and rat. Brain Res Dev Brain Res. 1992; 65 21-33
- 76 Whitlon D S, Zhang X, Kusakabe M. Tenascin-C in the cochlea of the developing mouse. J Comp Neurol. 1999; 406 361-374
- 77 Aletsee C, Mullen L, Kim D, Pak K, Brors D, Dazert S, Ryan A F. The disintegrin kistrin inhibits neurite extension from spiral ganglion explants cultured on laminin. Audiol Neurootol. 2001; 6 57-65
- 78 Koppl C, Manley G A, Konishi M. Auditory processing in birds. Curr Opin Neurobiol. 2000; 10 474-481
- 79 Bermingham N A, Hassan B A, Price S D, Vollrath M A, Ben-Arie N, Eatock R A, Bellen H J, Lysakowski A, Zoghbi H Y. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999; 284 1837-1841
- 80 Zheng J L, Gao W Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci. 2000; 3 580-586
- 81 Tsai H, Hardisty R E, Rhodes C, Kiernan A E, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter A J, Brown S D, Steel K P. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet. 2001; 10 507-512
- 82 McEvilly R J, Erkman L, Luo L, Sawchenko P E, Ryan A F, Rosenfeld M G. Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature. 1996; 384 574-577
- 83 Erkman L, McEvilly R J, Luo L, Ryan A K, Hooshmand F, O'Connell S M, Keithley E M, Rapaport D H, Ryan A F, Rosenfeld M G. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature. 1996; 381 603-606
- 84 Vahava O, Morell R, Lynch E D, Weiss S, Kagan M E, Ahituv N, Morrow J E, Lee M K, Skvorak A B, Morton C C, Blumenfeld A, Frydman M, Friedman T B, King M C, Avraham K B. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science. 1998; 279 1950-1954
- 85 Pickles J O, van Heumen W R. The expression of messenger RNAs coding for growth factors, their receptors, and eph-class receptor tyrosine kinases in normal and ototoxically damaged chick cochleae. Dev Neurosci. 1997; 19 476-487
- 86 Umemoto M, Sakagami M, Fukazawa K, Ashida K, Kubo T, Senda T, Yoneda Y. Hair cell regeneration in the chick inner ear following acoustic trauma: ultrastructural and immunohistochemical studies. Cell Tissue Res. 1995; 281 435-443
- 87 Lee K H, Cotanche D A. Potential role of bFGF and retinoic acid in the regeneration of chicken cochlear hair cells. Hear Res. 1996; 94 1-13
- 88 Lowenheim H, Furness D N, Kil J, Zinn C, Gultig K, Fero M L, Frost D, Gummer A W, Roberts J M, Rubel E W, Hackney C M, Zenner H P. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci USA. 1999; 96 4084-4088
- 89 Jordan C T, Lemischka I R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes & Development. 1990; 4 220-232
- 90 Wright D E, Cheshier S H, Wagers A J, Randall T D, Christensen J L, Weissman I L. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood. 2001; 97 2278-2285
- 91 Nishio N, Hisha H, Ogata H, Inaba M, Yamamoto Y, Amoh Y, Yasumizu R, Hanada K, Hamada H, Ikehara S. Changes in markers, receptors and adhesion molecules expressed on murine hemopoietic stem cells after a single injection of 5- fluorouracil. Stem Cells. 1996; 14 584-591
- 92 Campbell K H, McWhir J, W.A. R, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996; 380 64-66
- 93 Shamblott M J, Axelman J, Wang S, Bugg E M, Littlefield J W, Donovan P J, Blumenthal P D, Huggins G R, Gearhart J D. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998; 95 13 726-13 731
- 94 Wei G, Schubiger G, Harder F, Müller A M. Stem cell plasticity in mammals and transdetermination in Drosophila: common themes?. Stem Cells. 2000; 18 409-414
- 95 Kawagoe H, Humphries R K, Blair A, Sutherland H J, Hogge D E. Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia. 1999; 13 687-698
Priv.-Doz. Dr. Stefan Dazert
Hals-Nasen-Ohrenklinik der Ruhr-Universität Bochum · St. Elisabeth Hospital ·
Bleichstraße 15 · 44787 Bochum ·
Email: s.dazert@mail.uni-wuerzburg.de