Abstract
Background & Aims: Wilson disease (WD)
is an autosomal recessively inherited copper storage disease due to mutations
in the ATP7B gene. It results in impaired biliary
copper excretion followed by liver injury leading to cirrhosis. In parallel,
copper accumulates in other tissues e. g. basal ganglia of the brain inducing
motoric disorders. Phenotypical cure of Wilson disease by liver transplantation
raised the question whether gene therapy may represent a successful alternative
treatment procedure. To examine the principle feasibility of this approach we
investigated the effects of gene transfer using an adenoviral vector construct
expressing the human ATP7B cDNA in an established
rodent model for WD, the Long-Evans Cinnemon rat (LEC).
Methods: Transduction efficiency was
assessed by RT-PCR, Western blot and immunofluorescence analysis. The
therapeutic effect was estimated by analyzing holoceruloplasmin and its
ferroxidase activity in serum, and the copper content of excrements. Changes in
copper homeostasis were determined by positron emission tomography (PET).
Results: Successful, but temporary gene
transfer was clearly detectable on RNA and protein levels. In parallel the
temporary therapeutic effect was documented by restoration of serum
holoceruloplasmin and of its ferroxidase activity. Additionally the Ad-ATP7B treated LEC rat revealed a higher 64 Cu
content in stool. PET was able to visualize differences in 64 Cu
distribution between wild type and LEC rats, indicating its principle
usefulness as analytical tool.
Conclusion: The data demonstrate proof of
principle of successful gene therapy in an experimental model of WD. As a
consequence of successful but only transient therapeutic effect of adenoviral
gene transfer we can now focus more efficient and permanent gene transfer
strategies.
Zusammenfassung
Hintergrund und Ziel: Der
autosomal-rezessiv vererbte Morbus Wilson (WD) ist eine
Kupferspeichererkrankung aufgrund von Mutationen im ATP7B-Gen. Er ist
gekennzeichnet durch eine verminderte biliäre Kupferausscheidung mit
nachfolgender Leberschädigung bis hin zur Zirrhose sowie einer
Akkumulation von Kupfer auch in anderen Geweben. Aufgrund der Tatsache, dass
der Morbus Wilson durch eine Lebertransplantation phänotypisch heilbar
ist, stellte sich die Frage, ob eine Gentherapie eine alternative
Behandlungsstrategie darstellen könnte. Zur Prüfung der prinzipiellen
Möglichkeit dieses Ansatzes untersuchten wir die Wirksamkeit des
adenoviralen Transfers des Morbus-Wilson-Gens in der Long-Evans-Cinnamon-Ratte
(LEC), einem etablierten Morbus-Wilson-Tiermodell.
Methoden: Die Transduktionseffizienz wurde
mit RT-PCR, Western blot und Immunfluoreszenz geprüft. Der therapeutische
Effekt wurde mittels Ferrooxidaseaktivitätsassay und
Holocoeruloplasmin-Messungen im Serum sowie Messung der
biliären/intestinalen und renalen Kupferausscheidung analysiert. Mittels
Positronenemmisionstomographie wurde der Einfluss auf die Kupferhomöostase
untersucht.
Ergebnisse: Der erfolgreiche, jedoch nur
vorrübergehende adenovirale Transfer des ATP7B-Gens war auf RNA- und
Proteinebene deutlich erkennbar. Parallel hierzu zeigte sich der funktionelle
Erfolg in der vorrübergehenden Wiederherstellung des Holocoeruloplasmins
und seiner Ferrooxidaseaktivität im Serum sowie in der gesteigerten,
biliären Kupferausscheidung.
Schlussfolgerung: Die Daten verdeutlichen
die prinzipielle Anwendbarkeit der Gentherapie bei Morbus Wilson. Aufgrund des
nur vorrübergehenden Therapieerfolgs des adenoviralen Gentransfers sind
nun gentherapeutische Strategien mit höherer Transduktionseffizienz und
längerandauerndem Therapieerfolg zu entwickeln.
Key words
Wilson Disease - Gene
Therapy - Adenoviral Vector - LEC-Rat - PET
Schlüsselwörter
Morbus
Wilson - Gentherapie - Adenoviraler
Vektor - LEC-Ratte - PET
References
1
Wilson S AK.
Progressive lenticular degeneration: A familial nervous
disease associated with cirrhosis of the
liver.
Brain.
1912;
34
295-507
2
Bull P C, Thomas G R, Rommens J M, Forbes J R, Cox D W.
The Wilson disease gene is a putative copper transporting
P-type ATPase similar to the Menkes gene.
Nat
Genet.
1993;
5
327-337
3
Petrukhin K, Fischer S G, Piratsu M. et al .
Mapping, cloning and genetic characterization of the regions
containing the Wilson disease locus.
Nat
Genet.
1993;
5
338-343
4
Tanzi R E, Petrukhin K, Chernov I. et al .
The Wilson disease gene is a copper transporting ATPase with
homology to the Menkes disease gene.
Nat
Genet.
1993;
5
344-350
5
Duc H H, Hefter H, Stremmel W. et al .
His1069Gln and six novel Wilson disease mutations: Analysis
of relevance for early diagnosis and phenotype.
Eur J Hum
Genet.
1998;
6
613-623
6
Stremmel W.
Wilson disease: Clinical presentation, treatment, and
survival.
Ann Intern
Med.
1991;
115
720-726
7
Scheinberg I H, Sternlieb I, Schilsky M, Stockert R J.
Penicillamine may detoxify copper in Wilson’s
disease.
Lancet.
1987;
2
95
8
Smolarek C, Stremmel W.
Therapy of Wilson disease (author’s
transl.).
Z
Gastroenterol.
1999;
37
293-300
9
Brewer G J, Yuzbasiyan-Gurkan V, Young A B.
Treatment of Wilson’s disease.
Semin
Neurol.
1987;
7
209-220
10
Walshe J M.
Penicillamine: A new oral therapy for Wilson’s
disease.
Am J
Med.
1956;
2
487-495
11
Schumacher G, Platz K P, Mueller A R. et al .
Liver transplantation: Treatment of choice for hepatic and
neurological manifestation of Wilson’s disease.
Clin
Transplant.
1997;
11
217-224
12
Khanna A, Jain A, Eghtesad B, Rakela J.
Liver transplantation for metabolic liver
diseases.
Surg Clin North
Am.
1999;
79
153-162
13
Schumacher G, Mueller A R, Platz K P. et al .
Neurologic symptoms improve in patients with Wilson’s
disease despite immunosuppression.
Transplant
Proc.
1996;
28
3099-3100
14
Chen C L, Chen Y S, Lui C C, Hsu S P.
Neurological improvement of Wilson’s disease after
liver transplantation.
Transplant
Proc.
1997;
29
497-498
15
Kassam N, Witt N, Kneteman N, Bain V G.
Liver transplantation for neuropsychiatric Wilson
disease.
Can J
Gastroenterol.
1998;
12
65-68
16
Bax R T, Hassler A, Luck W. et al .
Cerebral manifestation of Wilson’s disease successfully
treated with liver
transplantation.
Neurology.
1998;
51
863-865
17
Lui C C, Chen C L, Cheng Y F, Lee T Y.
Changes in neuroimaging in Wilson’s disease following
orthotopic liver transplantation.
Transplant
Proc.
1998;
30
3324-3325
18
Stracciari A, Tempestini A, Borghi A, Guarino M.
Effect of liver transplantation on neirological manifestation
in Wilson disease.
Arch
Neurol.
2000;
57
384-386
19
Schilsky M, Scheinberg I, Sternlieb I.
Liver transplantation for Wilson’s disease: Indications
and
outcome.
Hepatology.
1994;
19
583-587
20
Schilsky M, Stockert R J, Sternlieb I.
Pleiotropic effect of LEC mutation: A rodent model of
Wilson’s disease.
Am J
Physiol.
1994;
266
907-913
21
Wu J, Forbes J R, Chen H S, Cox D W.
The LEC rat has a deletion in the copper transporting ATPase
gene homologous to the Wilson disease gene.
Nat
Genet.
1994;
7
541-545
22
Yoshida M C, Masuda R, Sasaki M. et al .
New mutation causing hereditary hepatitis in the laboratory
rat.
J
Hered.
1987;
78
361-365
23 Mori M, Yoshida M C, Takeichi N, Taniguchi N. ”The LEC
rat”. Tokio; Springer-Verlag 1991
24
Löser P, Sandig V, Kirillova I, Strauss M.
Evaluation of HBV promotors for use in hepatic gene
therapie.
Biol Chem
Hoppe-Seyler.
1996;
377
187-193
25
Chartier C, Degryse E, Gantzer M. et al .
Efficient generation of recombinant adenovirus vectors by
homologous recombination in Escherichia coli.
J
Virol.
1996;
70
4805-4810
26
Sandig V, Löser P, Lieber A, Kay M A, Strauss M.
HBV-derived promotors direct liver-specific expression of an
adenovirally transduced LDL receptor gene.
Gene
Ther.
1996;
3
1002-1009
27
Terada K, Nakako T, Yang X L. et al .
Restoration of holoceruloplasmin synthesis in LEC rat after
infusion of recombinant adenovirus bearing WND cDNA.
J Biol
Chem.
1988;
237
1815-1820
28
Laemmli U K.
Cleavage of structural proteins during the assembly of the
head of bacteriophage
T4.
Nature.
1970;
227
680-685
29
Schaefer M, Hopkins R G, Failla M L, Gitlin J D.
Hepatocyte-specific localization and copper-dependent
trafficking of the Wilson’s disease protein in the liver.
Am J
of Physiol
Soc.
1999;
276
G639-G646
30
Sato M, Schilsky M L, Stockert R J, Morell A G, Sternlieb I.
Detection of multiple forms of human
ceruloplasmin.
J Biol
Chem.
1990;
5
2533-2537
31
Schosinsky K H, Lehmann H P, Beeler M F.
Measurement of ceruloplasmin from its oxidase activity in
serum by use of o-dianisidine dihydrochloride.
Clin
Chem.
1974;
20
1556-1563
32
Holte S, Ostertag H, Kesselberg M.
A preliminary evaluation of a dual crystal positron
camera.
J Comput Assist
Tomogr.
1987;
11
691-697
33
Yamada T, Agui T, Suzuki Y, Sato M, Matsumoto K.
Inhibition of the copper incorporation into ceruloplasmin
leads to the deficiency in serum ceruloplasmin activity in Long-Evans Cinnamon
mutant rat.
J Biol
Chem.
1993;
268
8965-8971
34
Holtzman N A, Gaumnitz B M.
Studies on the rate of release and turnover of ceruloplasmin
and apoceruloplasmin in rat plasma.
J Biol
Chem.
1970;
245
2354-2358
35
Wesch H, Przuntek H, Feist D.
Wilson’ disease: A rapid diagnosis and differentiation
of heterozygous and homozygous carriers with 64CuCl2 (author’s
transl).
Dtsch Med
Wochenschr.
1980;
105
483-488
36
Klein D, Lichtmannegger J, Heinzmann U, Summer K H.
Dissolution of copper-rich granules in hepatic lysosomes by
D-penicillamine prevents the development of fulminant hepatitis in Long-Evans
cinnamon rats.
J
Hepatol.
2000;
32
193-201
37
Park F, Ohashi K, Chiu W, Naldini L, Kay M A.
Efficient lentiviral transduction of liver requires cell
cycling in vivo.
Nat
Genet.
2000;
24
49-52
38
Palombo F, Monciotti A, Recchia A. et al .
Site-specific integration in mammalian cells mediated by a
new hybrid Baculovirus-Adeno-associated virus vector.
J
Virol.
1998;
72
5025-5034
39
Recchia A, Parks R J, Lamartina S. et al .
Site-specific integration mediated by a hybrid
adenovirus/adenoassociated virus vector.
Proc Natl Acad Sci
USA.
1999;
96
2615-2620
40
Hofman C, Löser P, Cichon G. et al .
Ovine adenovirus vectors overcome preexisting humoral
immunity against human adenoviruses in
vivo.
J Virol.
1999;
73
6930-6936
41
Overturf K, Al-Dhalimy M, Tanguay R. et al .
Hepatocytes corrected by gene therapy are selected in vivo in
a murine model of hereditary tyrosinaemia type I.
Nat
Genet.
1996;
12
266-273
Korrespondenzanschrift
Wolfgang Stremmel, MD
Medizinische Klinik IV Klinikum der Universität
Heidelberg
Bergheimer Straße 58
69115 Heidelberg
eMail: wolfgang_stremmel@med.uni-heidelberg.de