References
For reported total syntheses of taxol:
1a
Nicolaou KC.
Yang Z.
Liu JJ.
Ueno H.
Nantermet PG.
Guy RK.
Claiborne CF.
Renaud J.
Couladouros EA.
Paulvannan K.
Sorensen EJ.
Nature (London)
1994,
367:
630
1b
Holton RA.
Somoza C.
Kim H.-B.
Liang F.
Biediger RJ.
Boatman PD.
Shindo M.
Smith C.
Kim S.
Nadizadeh H.
Suzuki Y.
Tao C.
Vu P.
Tang S.
Zhang P.
Murthi KK.
Gentile LN.
Liu JH.
J. Am. Chem. Soc.
1994,
116:
1597
1c
Holton RA.
Somoza C.
Kim H.-B.
Liang F.
Biediger RJ.
Boatman PD.
Shindo M.
Smith C.
Kim S.
Nadizadeh H.
Suzuki Y.
Tao C.
Vu P.
Tang S.
Zhang P.
Murthi KK.
Gentile LN.
Liu JH.
J. Am. Chem. Soc.
1994,
116:
1599
1d
Masters JJ.
Link JT.
Snyder LB.
Young WB.
Danishefsky SJ.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1723 ; Angew. Chem. 1995, 107, 1886
1e
Wender PA.
Badham NF.
Conway SP.
Floreancig PE.
Glass TE.
Gränicher C.
Houze JB.
Jänichen J.
Lee D.
Marquess DG.
McGrane PL.
Meng W.
Mucciaro TP.
Mühlebach M.
Natchus MG.
Paulsen H.
Rawlins DB.
Satkofsky J.
Shuker AJ.
Sutton JC.
Taylor RE.
Tomooka K.
J. Am. Chem. Soc.
1997,
119:
2755
1f
Wender PA.
Badham NF.
Conway SP.
Floreancig PE.
Glass TE.
Gränicher C.
Houze JB.
Jänichen J.
Lee D.
Marquess DG.
McGrane PL.
Meng W.
Mucciaro TP.
Mühlebach M.
Natchus MG.
Paulsen H.
Rawlins DB.
Satkofsky J.
Shuker AJ.
Sutton JC.
Taylor RE.
Tomooka K.
J. Am. Chem. Soc.
1997,
119:
2757
1g
Mukaiyama T.
Shiina I.
Iwadare H.
Sakoh H.
Tani Y.
Hasegawa M.
Saitoh K.
Proc. Jpn. Acad. B
1997,
73(6):
95
1h
Morihira K.
Hara R.
Kawahara S.
Nishimori T.
Nakamura N.
Kusama H.
Kuwajima I.
J. Am. Chem. Soc.
1998,
120:
12980
For reviews on taxane syntheses:
2a
Nicolaou KC.
Dai W.-M.
Guy RK.
Angew. Chem., Int. Ed. Engl.
1994,
33:
15 ; Angew. Chem. 1994, 106, 38
2b
Boa AN.
Jenkins PR.
Lawrence NJ.
Contemporary Organic Synthesis
1994,
1:
48
For reviews on the construction of medium sized rings see:
3a
Petasis NA.
Patane MA.
Tetrahedron
1992,
48:
5757
3b
Mehta G.
Singh V.
Chem. Rev.
1999,
99:
881
3c
Yet L.
Chem. Rev.
2000,
100:
2963
4a
Kumar P.
Rao AT.
Saravanan K.
Pandey B.
Tetrahedron Lett.
1995,
36:
3397
4b
Kumar P.
Rao AT.
Saravanan K.
Pandey B.
Tetrahedron Lett.
1995,
36:
3400
4c
Cossy J.
BouzBouz S.
Tetrahedron Lett.
1997,
38:
1931
4d
Nivlet A.
Dechoux L.
Le Gall T.
Mioskowski C.
Eur J. Org. Chem.
1999,
3251
4e
Nivlet A.
Le Guen V.
Dechoux L.
Gall TL.
Mioskowski C.
Tetrahedron Lett.
1998,
39:
2115
5
Thielemann W.
Schäfer HJ.
Kotila S.
Tetrahedron
1995,
51:
12027
6a
Chen S.-H.
Huang S.
Gao Q.
Golik J.
Farina V.
J. Org. Chem.
1994,
59:
1475
6b
Chen SH.
Huang Q.
Farina V.
Tetrahedron Lett.
1994,
35:
41
7 For a Scheme showing the competition between endo- and exocyclic ring opening see ref.
[5]
8 Synthesis of 1: Kovats E.
Fürst A.
Günthard HH.
Helv. Chim. Acta
1954,
34:
534
9
Trost BM.
Bogdanowicz J.
J. Am. Chem. Soc.
1973,
95:
5307
10
Lombardo L.
Tetrahedron Lett.
1982,
23:
4293
11
G reenwald R.
Chaykovsky M.
Corey EJ.
J. Org. Chem.
1963,
28:
1128
12
rac-(1S)-8-Methylspiro[bicyclo[5.3.1]undecane-11,1′-cyclopropane]-7-en-1-ol(2): Compound 5 (42 mg, 0.20 mmol) was dissolved in tetrahydrofuran (4.5 mL) and 0.9 M aq trifluoracetic acid (2 mL) was added. The solution was stirred for 4 h at r.t. and was then diluted with diethyl ether (25 mL). The aq layer was extracted with diethyl ether (3 × 40 mL) and the combined organic layers were dried over MgSO4. After filtration of the mixture and evaporation of the solvent, the crude product was purified by flash chromatography (cyclohexane-ethyl acetate = 10:1) to afford 2 as a colorless oil. Yield: 36 mg (0.17 mmol, 87%) 2; colorless oil; Rf = 0.20 (cyclohexane-ethyl acetate = 10:1); FT-IR(neat): ν (cm-1) = 3455 (s), 3079 (w), 2925 (s), 2849 (m), 1450 (m), 1376 (w), 1331 (w), 1261 (w), 1143 (m), 1100 (w), 1042 (w), 1002 (m), 928 (w), 890 (w), 797 (w); 1H NMR (C6D6, 300.1 MHz): δ (ppm) = 0.07-0.18, 0.79-0.88, 0.93-1.06, 1.12-1.23 (4 m, 4 H, each 2 × 2-H, 3-H), 1.27-1.90 (m, 12 H, each 2 × 2′-H, 3′-H, 4′-H, 5′-H, 10′-H, each 1 × 6′-Ha, 9′-Ha), 1.62 (s, 3 H, 8′-CH3), 2.23-2.38 (m, 1 H, 6′-Hb), 2.42-2.59 (m, 1 H, 9′-Hb); 13C NMR (C6D6, 75.5 MHz): δ (ppm) = 8.3, 9.2 (t, C-2, C-3), 18.9 (q, 8′-CH3), 24.4 (t, C-4′), 28.6 (t, C-3′), 28.8 (t, C-5′), 27.5 (t, C-6′), 28.1 (s, C-11′), 30.0 (t, C-9′); 37.6 (t, C-10′), 43.7 (t, C-2′), 73.5 (q, C-1′), 131.3 (s, C-8′), 134.6 (s, C-7′), MS (GC/MS, 70 eV): m/z (%) = 206(38)[M+], 178(100) [M+ - C2H4], 163(38) [M+ - C2H4 - CH3], 149(26), 135(26) [M+ - C5H11], 121(24), 107(32) [M+ - C5H11 - CO], 93(22), 91(20), 79(16), 77(14), 67(10), 55(16), 41(12) [C3H5
+]; Anal. Calcd for C14H22O: C, 81.50; H, 10.75. Found: C, 81.19; H, 11.03.
13
Shortridge RW.
Craig RA.
Greenlee KW.
Derfer JM.
Boord CE.
J. Am. Chem. Soc.
1948,
70:
946
14
Stahl KJ.
Hertzsch W.
Musso H.
Liebigs Ann. Chem.
1985,
7:
1474
15
Nakamura S.
Shibasaki M.
Tetrahedron Lett.
1994,
24:
4145
16a
Gream GE.
Pincombe CF.
Aust. J. Chem.
1974,
27:
543
16b
Fitjer L.
Scheuermann HJ.
Klages U.
Wehlen D.
Stephenson DS.
Binsch G.
Chem. Ber.
1986,
119:
1144
16c
Kiwus R.
Schwarz W.
Rossnagel I.
Musso H.
Chem. Ber.
1987,
120:
435
17
Lang P.
Musso H.
Chem. Ber.
1987,
120:
439
18a
Husstedt U.
Schäfer HJ.
Synthesis
1979,
964
18b
Husstedt U.
Schäfer HJ.
Synthesis
1979,
966
19 Similar results as described in Scheme
[4]
(a)were achieved with Pt/C at elevated H2-pressure (150 bar) and extended reaction times. Both catalysts PtO2 or Pt/C did not lead to a hydrogenolytic ring opening in glacial acid. The activity of PtO2 further decreases, when the reaction temperature increased. At 60 °C, the activity becomes insufficient to hydrogenate the double bond. At 110 °C 2 decomposes to a complex mixture, that according to GC/MS does not contain 3. To prevent decomposition of 2 at higher temperatures the solvent acetic acid was exchanged for ethanol, ethyl acetate or cyclohexane. However 2 remained unchanged in these solvents even at 98 bar hydrogen pressure, 140 °C and large amounts of catalyst. With Raney-Nickel in methanol at conditions of room temperature to 180 °C and 88 bar H2 no conversion of 2 occurred. With palladium on activated carbon in methanol 2 was completely hydrogenated to 8 at r.t. and 1 bar H2, however, the cyclopropane ring of 8 was not hydrogenated even when the temperature was increased to 50 °C and the pressure increased to 80 bar H2 [for higher temperatures see Scheme
[4]
(c)].
AM1 calculations reveal that the hydrogenation of 2 to 8 is exothermic by about 85 kJ/mol. Therefore, the reaction must be kinetically hindered for steric reasons. For a maximal overlap of the orbitals of the hydrogenation catalyst with the orbitals of the cyclopropane ring a facial approach is necessary. This is severely hindered by the 1-OH and the exo-CH3 group. This assumption is supported by the experimental result, in which the cyclopropane ring in 8 can be slowly opened after hydrogenation of the 1C-OH bond [Scheme 4, (c)]. For difficulties encountered in the hydrogenation of cyclopropane bonds attached to seven- or eight-membered rings see:
20a
Lei B.
Fallis AG.
J. Org. Chem.
1993,
58:
2186
20b
Janini TE.
Sampson P.
J. Org. Chem.
1997,
62:
5069
21 Based on 48% conversion in the preparation of 6 (Scheme
[2]
).