Subscribe to RSS
DOI: 10.1055/s-2002-25356
Short Synthesis of a Taxane-AB-Fragment with a Spiro-Cyclopropyl Group
Publication History
Publication Date:
07 February 2007 (online)
Abstract
An efficient synthesis of the taxane-AB-fragment with a spiro-cyclopropyl group 2 was accomplished. The synthetic strategy toward this AB-fragment involved a cyclopropanation of hydroazulenone 1, a Grignard addition, and an acid catalyzed cyclopropylcarbinyl-rearrangement.
Key words
fragmentation - propellane - spiro-cyclopropane - hydrogenation - taxan
- For reported total syntheses of taxol:
-
1a
Nicolaou KC.Yang Z.Liu JJ.Ueno H.Nantermet PG.Guy RK.Claiborne CF.Renaud J.Couladouros EA.Paulvannan K.Sorensen EJ. Nature (London) 1994, 367: 630 -
1b
Holton RA.Somoza C.Kim H.-B.Liang F.Biediger RJ.Boatman PD.Shindo M.Smith C.Kim S.Nadizadeh H.Suzuki Y.Tao C.Vu P.Tang S.Zhang P.Murthi KK.Gentile LN.Liu JH. J. Am. Chem. Soc. 1994, 116: 1597 -
1c
Holton RA.Somoza C.Kim H.-B.Liang F.Biediger RJ.Boatman PD.Shindo M.Smith C.Kim S.Nadizadeh H.Suzuki Y.Tao C.Vu P.Tang S.Zhang P.Murthi KK.Gentile LN.Liu JH. J. Am. Chem. Soc. 1994, 116: 1599 -
1d
Masters JJ.Link JT.Snyder LB.Young WB.Danishefsky SJ. Angew. Chem., Int. Ed. Engl. 1995, 34: 1723 ; Angew. Chem. 1995, 107, 1886 -
1e
Wender PA.Badham NF.Conway SP.Floreancig PE.Glass TE.Gränicher C.Houze JB.Jänichen J.Lee D.Marquess DG.McGrane PL.Meng W.Mucciaro TP.Mühlebach M.Natchus MG.Paulsen H.Rawlins DB.Satkofsky J.Shuker AJ.Sutton JC.Taylor RE.Tomooka K. J. Am. Chem. Soc. 1997, 119: 2755 -
1f
Wender PA.Badham NF.Conway SP.Floreancig PE.Glass TE.Gränicher C.Houze JB.Jänichen J.Lee D.Marquess DG.McGrane PL.Meng W.Mucciaro TP.Mühlebach M.Natchus MG.Paulsen H.Rawlins DB.Satkofsky J.Shuker AJ.Sutton JC.Taylor RE.Tomooka K. J. Am. Chem. Soc. 1997, 119: 2757 -
1g
Mukaiyama T.Shiina I.Iwadare H.Sakoh H.Tani Y.Hasegawa M.Saitoh K. Proc. Jpn. Acad. B 1997, 73(6): 95 -
1h
Morihira K.Hara R.Kawahara S.Nishimori T.Nakamura N.Kusama H.Kuwajima I. J. Am. Chem. Soc. 1998, 120: 12980 - For reviews on taxane syntheses:
-
2a
Nicolaou KC.Dai W.-M.Guy RK. Angew. Chem., Int. Ed. Engl. 1994, 33: 15 ; Angew. Chem. 1994, 106, 38 -
2b
Boa AN.Jenkins PR.Lawrence NJ. Contemporary Organic Synthesis 1994, 1: 48 - For reviews on the construction of medium sized rings see:
-
3a
Petasis NA.Patane MA. Tetrahedron 1992, 48: 5757 -
3b
Mehta G.Singh V. Chem. Rev. 1999, 99: 881 -
3c
Yet L. Chem. Rev. 2000, 100: 2963 -
4a
Kumar P.Rao AT.Saravanan K.Pandey B. Tetrahedron Lett. 1995, 36: 3397 -
4b
Kumar P.Rao AT.Saravanan K.Pandey B. Tetrahedron Lett. 1995, 36: 3400 -
4c
Cossy J.BouzBouz S. Tetrahedron Lett. 1997, 38: 1931 -
4d
Nivlet A.Dechoux L.Le Gall T.Mioskowski C. Eur J. Org. Chem. 1999, 3251 -
4e
Nivlet A.Le Guen V.Dechoux L.Gall TL.Mioskowski C. Tetrahedron Lett. 1998, 39: 2115 - 5
Thielemann W.Schäfer HJ.Kotila S. Tetrahedron 1995, 51: 12027 -
6a
Chen S.-H.Huang S.Gao Q.Golik J.Farina V. J. Org. Chem. 1994, 59: 1475 -
6b
Chen SH.Huang Q.Farina V. Tetrahedron Lett. 1994, 35: 41 - 8 Synthesis of 1:
Kovats E.Fürst A.Günthard HH. Helv. Chim. Acta 1954, 34: 534 - 9
Trost BM.Bogdanowicz J. J. Am. Chem. Soc. 1973, 95: 5307 - 10
Lombardo L. Tetrahedron Lett. 1982, 23: 4293 - 11
G reenwald R.Chaykovsky M.Corey EJ. J. Org. Chem. 1963, 28: 1128 - 13
Shortridge RW.Craig RA.Greenlee KW.Derfer JM.Boord CE. J. Am. Chem. Soc. 1948, 70: 946 - 14
Stahl KJ.Hertzsch W.Musso H. Liebigs Ann. Chem. 1985, 7: 1474 - 15
Nakamura S.Shibasaki M. Tetrahedron Lett. 1994, 24: 4145 -
16a
Gream GE.Pincombe CF. Aust. J. Chem. 1974, 27: 543 -
16b
Fitjer L.Scheuermann HJ.Klages U.Wehlen D.Stephenson DS.Binsch G. Chem. Ber. 1986, 119: 1144 -
16c
Kiwus R.Schwarz W.Rossnagel I.Musso H. Chem. Ber. 1987, 120: 435 - 17
Lang P.Musso H. Chem. Ber. 1987, 120: 439 -
18a
Husstedt U.Schäfer HJ. Synthesis 1979, 964 -
18b
Husstedt U.Schäfer HJ. Synthesis 1979, 966 - AM1 calculations reveal that the hydrogenation of 2 to 8 is exothermic by about 85 kJ/mol. Therefore, the reaction must be kinetically hindered for steric reasons. For a maximal overlap of the orbitals of the hydrogenation catalyst with the orbitals of the cyclopropane ring a facial approach is necessary. This is severely hindered by the 1-OH and the exo-CH3 group. This assumption is supported by the experimental result, in which the cyclopropane ring in 8 can be slowly opened after hydrogenation of the 1C-OH bond [Scheme 4, (c)]. For difficulties encountered in the hydrogenation of cyclopropane bonds attached to seven- or eight-membered rings see:
-
20a
Lei B.Fallis AG. J. Org. Chem. 1993, 58: 2186 -
20b
Janini TE.Sampson P. J. Org. Chem. 1997, 62: 5069
References
For a Scheme showing the competition between endo- and exocyclic ring opening see ref. [5]
12rac-(1S)-8-Methylspiro[bicyclo[5.3.1]undecane-11,1′-cyclopropane]-7-en-1-ol(2): Compound 5 (42 mg, 0.20 mmol) was dissolved in tetrahydrofuran (4.5 mL) and 0.9 M aq trifluoracetic acid (2 mL) was added. The solution was stirred for 4 h at r.t. and was then diluted with diethyl ether (25 mL). The aq layer was extracted with diethyl ether (3 × 40 mL) and the combined organic layers were dried over MgSO4. After filtration of the mixture and evaporation of the solvent, the crude product was purified by flash chromatography (cyclohexane-ethyl acetate = 10:1) to afford 2 as a colorless oil. Yield: 36 mg (0.17 mmol, 87%) 2; colorless oil; Rf = 0.20 (cyclohexane-ethyl acetate = 10:1); FT-IR(neat): ν (cm-1) = 3455 (s), 3079 (w), 2925 (s), 2849 (m), 1450 (m), 1376 (w), 1331 (w), 1261 (w), 1143 (m), 1100 (w), 1042 (w), 1002 (m), 928 (w), 890 (w), 797 (w); 1H NMR (C6D6, 300.1 MHz): δ (ppm) = 0.07-0.18, 0.79-0.88, 0.93-1.06, 1.12-1.23 (4 m, 4 H, each 2 × 2-H, 3-H), 1.27-1.90 (m, 12 H, each 2 × 2′-H, 3′-H, 4′-H, 5′-H, 10′-H, each 1 × 6′-Ha, 9′-Ha), 1.62 (s, 3 H, 8′-CH3), 2.23-2.38 (m, 1 H, 6′-Hb), 2.42-2.59 (m, 1 H, 9′-Hb); 13C NMR (C6D6, 75.5 MHz): δ (ppm) = 8.3, 9.2 (t, C-2, C-3), 18.9 (q, 8′-CH3), 24.4 (t, C-4′), 28.6 (t, C-3′), 28.8 (t, C-5′), 27.5 (t, C-6′), 28.1 (s, C-11′), 30.0 (t, C-9′); 37.6 (t, C-10′), 43.7 (t, C-2′), 73.5 (q, C-1′), 131.3 (s, C-8′), 134.6 (s, C-7′), MS (GC/MS, 70 eV): m/z (%) = 206(38)[M+], 178(100) [M+ - C2H4], 163(38) [M+ - C2H4 - CH3], 149(26), 135(26) [M+ - C5H11], 121(24), 107(32) [M+ - C5H11 - CO], 93(22), 91(20), 79(16), 77(14), 67(10), 55(16), 41(12) [C3H5 +]; Anal. Calcd for C14H22O: C, 81.50; H, 10.75. Found: C, 81.19; H, 11.03.
19Similar results as described in Scheme [4] (a)were achieved with Pt/C at elevated H2-pressure (150 bar) and extended reaction times. Both catalysts PtO2 or Pt/C did not lead to a hydrogenolytic ring opening in glacial acid. The activity of PtO2 further decreases, when the reaction temperature increased. At 60 °C, the activity becomes insufficient to hydrogenate the double bond. At 110 °C 2 decomposes to a complex mixture, that according to GC/MS does not contain 3. To prevent decomposition of 2 at higher temperatures the solvent acetic acid was exchanged for ethanol, ethyl acetate or cyclohexane. However 2 remained unchanged in these solvents even at 98 bar hydrogen pressure, 140 °C and large amounts of catalyst. With Raney-Nickel in methanol at conditions of room temperature to 180 °C and 88 bar H2 no conversion of 2 occurred. With palladium on activated carbon in methanol 2 was completely hydrogenated to 8 at r.t. and 1 bar H2, however, the cyclopropane ring of 8 was not hydrogenated even when the temperature was increased to 50 °C and the pressure increased to 80 bar H2 [for higher temperatures see Scheme [4] (c)].
21Based on 48% conversion in the preparation of 6 (Scheme [2] ).