Zusammenfassung
Die Physiologie der Schmerzwahrnehmung beruht auf einer komplexen
Interaktion peripherer, spinaler und supraspinaler Strukturen des
Zentralnervensystems (ZNS). Auf jeder Ebene des ZNS erfolgt eine Modulation
nozizeptiver Information, wobei die zwei wichtigsten Transmittersysteme der
Nozizeption und der Antinozizeption, das N-methyl-D-aspartate (NMDA)- und das
Opioid-Rezeptor-System, eine nahezu identische Verteilung zeigen. Glutamat, der
natürliche exzitatorische Transmitter aller Neurone mit ionotropen und
metabotropen NMDA-Rezeptoren, bewirkt durch Öffnen des Ionenkanals
für Ca2+ und die dadurch ausgelöste Aktivierung der
intraneuronalen Stickoxidsynthase (NOS) die Freisetzung von Stickoxid (NO).
Diffusion des NO zu Nachbarneuronen erhöht deren cGMP-Synthese und
Aktivität, die vor allem auf spinaler Ebene zur Hyperalgesie oder
Allodynie führen kann, wenn über diesen Mechanismus Transmitter aus
Endigungen nozizeptiver Neurone freigesetzt werden. Die periphere
Sensibilisierung nozizeptiver Axone erfolgt meist über Serotonin,
Bradykinin oder Prostaglandine. Während die μ- und δ-Opioid
Rezeptoren die NMDA-Rezeptor vermittelte Nozizeption hemmen oder
verstärken, wirken κ-Opioide durch direkte Interaktion mit dem
NMDA-Rezeptor auf diesen blockierend. Unter Stress freigesetztes
Corticotropin-releasing Hormon (CRH) wirkt auf allen Ebenen des ZNS
antinozizeptiv.
Abstract
The physiology of nociception involves a complex interaction of
peripheral and central nervous system (CNS) structures, extending from the
skin, the viscera and the musculoskeletal tissues to the cerebral cortex. The
pathophysiology of chronic pain shows alterations of normal physiological
pathways, giving rise to hyperalgesia or allodynia. After integration in the
spinal cord, nociceptive information is transferred to thalamic structures
before it reaches the somatosensory cortex. Each of these levels of the CNS
contain modulatory mechanisms. The two most important systems in modulating
nociception and antinociception, the N-methyl-D-aspartate (NMDA) and opioid
receptor system, show a close distribution pattern in nearly all CNS regions,
and activation of NMDA receptors has been found to contribute to the
hyperalgesia associated with nerve injury or inflammation. Apart from substance
P (SP), the major facilitatory effect in nociception is exerted by glutamate as
the natural activator of NMDA receptors. Stimulation of ionotropic NMDA
receptors causes intraneuronal elevation of Ca2+ which
stimulates nitric oxide synthase (NOS) and, hence, the production of nitric
oxide (NO). NO as a gaseous molecule diffuses out from the neuron and by action
on guanylyl cyclase, NO stimulates in neighbouring neurons the formation of
cGMP. Depending on the expression of cGMP-controlled ion channels in target
neurons, NO may act excitatory or inhibitory. NO has been implicated in the
development of hyperexcitability, resulting in hyperalgesia or allodynia, by
increasing nociceptive transmitters at their central terminals. Among the three
subtypes of opioid receptors, µ- and δ-receptors either inhibit or
potentiate NMDA receptor-mediated events, while κ opioids antagonize NMDA
receptor-mediated activity. Recently, stress-induced release of CRH has been
found to act at all levels of the neuraxis to produce analgesia. Modulation of
nociception occurs at all levels of the neuraxis, thus eliciting the
multidimensional experience of pain involving sensory-discriminative,
affective-motivational, cognitive, and locomotor components.
Literatur
-
1
Abbott F V, Hong Y, Blier P.
Persisting sensitization of the behavioural response to
formalin-induced injury in the rat through activation of serotonin2A
receptors.
Neurosci.
1997;
77
575-584
-
2
Aimar P, Pasti L, Carmignoto G, Merighi A.
Nitric oxide-producing islet cells modulate the release of
sensory neuropeptides in the rat substantia gelatinosa.
J Neurosci.
1998;
18
10 375-10 388
-
3
Aizenman E, Lipton S A, Loring R H.
Selective modulation of NMDA responses by reduction and
oxidation.
Neuron.
1989;
2
1257-1263
-
4
Amit Z, Galina Z H.
Stress-induced analgesia: adaptive pain suppression.
Physiol Rev.
1986;
66
1091-1120
-
5
Bandler R, Shipley M T.
Columnar organization in the midbrain periaqueductal grey:
modules for emotional expression?.
Trends Neurosci.
1994;
17
379-389
-
6
Barber L A, Vasko M R.
Activation of protein kinase C augments peptide release from
rat sensory neurons.
J Neurochem.
1996;
67
72-80
-
7
Basbaum A I.
Spinal mechanisms of acute and persistent pain.
Reg Anesth Pain Med.
1999;
24
59-67
-
8
Basbaum A I, Fields H L.
Endogenous pain control systems: brainstem spinal pathways
and endorphin circuitry.
Ann Rev Neurosci.
1984;
7
309-338
-
9
Besedovsky H, Del Rey A, Sorkin E, Dinarello C A.
Immunoregulatory feedback between interleukin-1 and
glucocorticoid hormones.
Science.
1986;
233
652-654
-
10
Besson J M, Caouch A.
Peripheral and spinal mechanisms of nociception.
Physiol Rev.
1987;
67
67-186
-
11 Björklund A, Hökfelt T. Handbook of Chemical Neuroanatomy. Vol 9: Neuropeptides in
the CNS, Part II. Björklund A, Hökfelt T, Kuhar MJ (Eds) Amsterdam; Elsevier 1990
-
12 Björklund A, Hökfelt T. Handbook of Chemical Neuroanatomy. Vol 11: Neuropeptide
Receptors in the CNS. Björklund A, Hökfelt T, Kuhar MJ (Eds) Amsterdam; Elsevier 1992
-
13
Bliss T VP, Collingridge G L.
A synaptic model of memory: long-term potentiation in the
hippocampus.
Nature.
1993;
361
31-39
-
14
Bonnot A, Corio M, Tramu G, Viala D.
Immunocytochemical distribution of ionotropic glutamate
receptor subunits in the spinal cord of the rabbit.
J Chem Neuroanat.
1996;
11
267-278
-
15
Bredt D S, Snyder S H.
Nitric oxide mediates glutamate-linked enhancement of cGMP
levels in the cerebellum.
Proc Natl Acad Sci USA.
1989;
86
9030-9033
-
16
Brenman J E, Bredt D S.
Synaptic signaling by nitric oxide.
Curr Opin Neurobiol.
1997;
7
374-378
-
17
Boxall S J, Berthele A, Laurie D J, Sommer B, Zieglgänsberger W, Urban L, Tölle T R.
Enhanced expression of metabotropic glutamate receptor 3
messenger RNA in the rat spinal cord during ultraviolet irradiation induced
peripheral inflammation.
Neurosci.
1998;
82
591-602
-
18
Buéno L, Fioramonti J, Garcia-Villar R.
Pathobiology of visceral pain: Molecular mechanisms and
therapeutic implications. III. Visceral afferent pathways: a source of new
therapeutic targets for abdominal pain.
Am J Physiol.
2000;
278
G670-G676
-
19
Burstein R, Potrebic S.
Retrograde labeling of neurons in the spinal cord that
project directly to the amygdala or the orbital cortex in the rat.
J Comp Neurol.
1993;
335
469-485
-
20 Bushnell M C. Thalamic processing of sensory-discriminative and
affective-motivational dimensions of pain. In: Besson JM, Guilbaud G, Ollat H (Eds). Forebrain Areas Involved in Pain Processing. Paris; John Libbey Eurotext 1995
-
21 Canguilhem G. Das Normale und das Pathologische. Berlin; Ullstein 1977
-
22
Casey K L.
Forebrain mechanisms of nociception and pain: analysis
through imaging.
Proc Natl Acad Sci USA.
1999;
96
7668-7674
-
23 Casey K L, Minoshima S. The forebrain network for pain: an emerging image. In: Besson JM, Guilbaud G, Ollat H (Eds) Forebrain Areas Involved in Pain Processing. Paris; John Libbey Eurotext 1995
-
24
Cervero F.
Sensory innervation of the viscera: peripheral basis of
visceral pain.
Physiol Rev.
1994;
74
95-138
-
25
Cervero F.
What is a nociceptor-specific (class3) cell?.
Pain.
1995;
62
123-124
-
26
Chapman V, Haley J E, Dickenson A H.
Electrophysiologic analysis of preemptive effects of spinal
opiods on N-methyl-D-aspartate receptor-mediated events.
Anesthesiology.
1994;
81
1429-1435
-
27
Chen L, Gu Y, Huang L YM.
The opioid peptide dynorphin directly blocks NMDA receptor
channels in the rat.
J Physiol (Lond).
1995;
482
575-581
-
28
Chrousos G P, Gold P W.
The concepts of stress and stress system disorders: overview
of physical and behavioral homeostasis.
JAMA.
1992;
267
1244-1252
-
29
Chudler E H, Dong W K.
The role of the basal ganglia in nociception and pain.
Pain.
1995;
60
5-38
-
30
Coggeshall R E, Carlton S M.
Receptor localization in the mammalian dorsal horn and
primary afferent neurons.
Brain Res Rev.
1997;
24
28-66
-
31
Coyle J T, Puttfarcken P.
Oxidative stress, glutamate, and neurodegenerative
disorders.
Science.
1993;
262
689-695
-
32
Craig A D, Reiman E M, Evans A, Bushnell M C.
Functional imaging of an illusion of pain.
Nature.
1996;
384
258-260
-
33
Crofford L J, Pillemer S R, Kalogeras K T, Cash J M, Michelson D, Kling M A, Sternberg E M, Gold P W, Chrousos G P, Wilder R L.
Hypothalamic-pituitary-adrenal axis perturbations in patients
with fibromyalgia.
Arthritis Rheum.
1994;
37
1583-1592
-
34
Cross S A.
Pathophysiology of pain.
Mayo Clin Proc.
1994;
69
375-383
-
35
Darland T, Heinricher M M, Grandy D K.
Orphanin FQ/nociceptin: a role in pain and analgesia, but so
much more.
Trends Neurosci.
1998;
21
215-221
-
36
Davis K D, Taylor S J, Crawley A P, Wood M L, Mikulis D J.
Functional MRI of pain and attention related activations in
the human cingulate cortex.
J Neurophysiol.
1997;
77
3370-3380
-
37
Deak T, Meriwether J, Fleshner M, Spencer R L, Abouhamze A, Moldawer L L, Grahn R E, Watkins L R, Maier S F.
Evidence that brief stress may induce the acute phase
response in rats.
Am J Physiol.
1997;
273
R1998-R2004
-
38
di Chiara G, Imperato A.
Opposite effects of mu and kappa opiate agonists on dopamine
release in the nucleus accumbens and in the dorsal caudate of freely moving
rats.
J Pharmacol Exp Ther.
1988;
244
1067-1080
-
39
Dray A, Perkins M.
Bradykinin and inflammatory pain.
Trends Neurosci.
1993;
16
99-104
-
40
Dunn A J, Berridge C W.
Physiological and behavioral responses to
corticotropin-releasing factor administration: is CRF a mediator of anxiety or
stress responses?.
Brain Res Rev.
1990;
15
71-100
-
41 Fanselow M S. Antinociception as a response to aversive Pavlovian
conditional stimuli: Cognitive and emotional mediators. In: Denny MR (Ed) Fear, Avoidance, and Phobias: a Fundamental Analysis. Hillsdale; Lawrence Erlbaum 1991: 61-86
-
42 Fanselow M S. The midbrain periaqueductal grey as a coordinator of action
in response to fear and anxiety. In: Depaulis A, Bandler R (Eds) The Periaqueductal Grey Matter. New York; Plenum Press 1991: 139-150
-
43 Fields H L, Basbaum A I. Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (Eds) Textbook of Pain. Edinburgh; Churchill-Livingstone 1994
-
44
Fock S, Mense S.
Excitatory effects of 5-hydroxytryptamine, histamine and
potassium ions on muscular group IV afferent units: a comparison with
bradykinin.
Brain Res.
1976;
105
459-467
-
45
Fürst S.
Transmitters involved in antinociception in the spinal
cord.
Brain Res Bull.
1999;
48
129-141
-
46
Garry M G, Richardson J D, Hargreaves K M.
Sodium nitroprusside evokes the release of immunoreactive
calcitonin gene-related peptide and substance P from dorsal horn slices via
nitric oxide-dependent and nitric oxide-independent mechanisms.
J Neurosci.
1994;
14
4329-4337
-
47
Garthwaite J, Charles S L, Chess-Williams R.
Endothelium-derived relaxing factor release on activation of
NMDA receptors suggests role as intercellular messenger in the brain.
Nature.
1988;
336
385-388
-
48
Giesler G J, Katter J T, Dado R J.
Direct spinal pathways to the limbic system for nociceptive
information.
Trends Neurosci.
1994;
17
244-250
-
49
Gracy K N, Svingos A L, Pickel V M.
Dual ultrastructural localization of mu-opioid receptors and
NMDA-type glutamate receptors in the shell of the rat nucleus accumbens.
J Neurosci.
1997;
17
4839-4848
-
50
Griesbacher T, Lembeck F.
Effect of bradykinin antagonists on bradykinin-induced plasma
extravasation, venoconstriction, prostaglandin E2 release, nociceptor
stimulation and contraction of the iris sphincter muscle in the rabbit.
Br J Pharmacol.
1987;
92
330-340
-
51
Handwerker H O, Kobal G.
Psychophysiology of experimentally induced pain.
Physiol Rev.
1993;
73
639-671
-
52
Harris J A.
Descending antinociceptive mechanisms in the brainstem: their
role in the animal’s defensive system.
J Physiol (Paris).
1996;
90
15-25
-
53
Harris J A, Westbrook R F.
Effects of benzodiazepine microinjection into the amygdala or
periaqueductal grey upon the expression of conditioned fear and hypoalgesia in
rats.
Behav Neurosci.
1995;
109
295-304
-
54
Hensel H.
Neural processes in thermoregulation.
Physiol Rev.
1973;
53
948-1017
-
55
Hoyt K R, Tang L-H, Aizenman E, Reynolds I R.
Nitric oxide modulates NMDA-induced increases in
intracellular Ca2+ in cultured rat forebrain neurons.
Brain Res.
1992;
592
310-316
-
56
Jasmin L, Burkey A R, Card J P, Basbaum A.
Transneuronal labelling of a nociceptive pathway, the
spino-(trigemino-)parabrachio-amygdaloid, in the rat.
J Neurosci.
1997;
17
3751-3765
-
57
Juan H, Seewann S.
Selective reduction by some vasodilators and the
prostaglandin antagonist SC-19 220 of a response to the algesic effect
of bradykinin.
Eur J Pharmacol.
1980;
65
267-278
-
58
Kagan V E, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R, Packer L.
Dihydrolipoic acid - a universal antioxidant both in
the membrane and in the aqueous phase.
Biochem Pharmacol.
1992;
44
1637-1649
-
59
Khasar S G, Ouseph A K, Choub B, Ho T, Green P G, Levine J D.
Is there more than one prostaglandin E receptor subtype
mediating hyperalgesia in the rat hindaw.
Neurosci.
1995;
64
1161-1165
-
60
Kuroda R, Kawabata A, Kawao N, Umeda W, Takemura M, Shigenaga Y.
Somatosensory cortex stimulation-evoked analgesia in rats:
potentiation by NO synthase inhibition.
Life Sci.
2000;
66
PL271-PL276
-
61
Ladabaum U, Minoshima S, Owyang C.
Pathobiology of visceral pain: Molecular mechanisms and
therapeutic implications. V. Central nervous system processing of somatic and
visceral sensory signals.
Am J Physiol.
2000;
279
G1-G6
-
62
Lang E, Novak A, Reeh P W, Handwerker H O.
Chemosensitivity of fine afferents from rat skin in
vitro.
J Neurophysiol.
1990;
63
887-901
-
63
Lariviere W R, Melzack R.
The role of corticotropin-releasing factor in pain and
analgesia.
Pain.
2000;
84
1-12
-
64
Lee D E, Kim S J, Zhuo M.
Comparison of behavioral responses to noxious cold and heat
in mice.
Brain Res.
1999;
845
117-121
-
65
Liebel J T, Swandulla D, Zeilhofer H U.
Modulation of excitatory synaptic transmission by nociceptin
in superficial dorsal horn neurones of the neonatal rat spinal cord.
Br J Pharmacol.
1997;
121
425-432
-
66
Lipton S A, Chol Y B, Pan Z H, Lei S Z, Chen H SV, Sucher N J, Loscalzo J, Singel D J, Stamler J S.
A redox-based mechanism for the neuroprotective and
neurodestructive effects of nitric oxide and related nitroso-compounds.
Nature.
1993;
364
626-632
-
67
Malcangio M, Bowery N G.
GABA and its receptors in the spinal cord.
Trends Pharmacol Sci.
1996;
17
457-462
-
68
Mansour A, Fox C A, Akil H, Watson S J.
Opioid-receptor mRNA expression in the rat CNS: anatomical
and functional implications.
Trends Neurosci.
1995;
18
22-29
-
69
Mansour A, Burke S, Pavlic R J, Akil H, Watson S J.
Immunohistochemical localization of the cloned kappa 1
receptor in the rat CNS and pituitary.
Neurosci.
1996;
71
671-690
-
70
Mao J.
NMDA and opioid receptors: their interaction in
antinociception, tolerance and neuroplasticity.
Brain Res Rev.
1999;
30
289-304
-
71
Mao J, Price D D, Phillips L L, Mayer D J.
Increases in protein kinase C gamma immunoreactivity in the
spinal cord of rats associated with tolerance to the analgesic effects of
morphine.
Brain Res.
1995;
677
257-267
-
72
Mao J, Price D D, Phillips L L, Mayer D J.
Mechanisms of hyperalgesis and morphine tolerance: a current
view of their possible interaction.
Pain.
1995;
62
259-274
-
73
Markenson J A.
Mechanisms of chronic pain.
Am J Med.
1996;
101 (Suppl 1A)
6S-18S
-
74
May A, Kaube H, Büchel C, Eichten C, Tijntjes M, Jüptner M, Weiller C, Deiner H C.
Experimental cranial pain elicited by capsaicin: a PET
study.
Pain.
1998;
74
61-66
-
75
McMahon S, Lewin G R, Wall P D.
Central hyperexcitability triggered by noxious inputs.
Curr Opin Neurobiol.
1993;
3
602-610
-
76
Meller S T, Gebhart G F.
Nitric oxide (NO) and nociceptive processing in the spinal
cord.
Pain.
1993;
52
127-136
-
77
Mendell L M, Wall P D.
Response of single dorsal cord cells to peripheral cutaneous
unmyelinated fibres.
Nature.
1965;
206
97-99
-
78
Mense S.
Nociception from skeletal muscle in relation to clinical
muscle pain.
Pain.
1993;
54
241-289
-
79 Mense S. Nociceptors in skeletal muscle and their reaction to
pathological tissue changes. In: Belmonte C, Cervero F (Eds) Neurobiology of Nociceptors. Oxford; Oxford Univ Press 1996: 184-201
-
80
Merskey H.
The definition of pain.
Eur J Psychiatry.
1991;
6
153-159
-
81
Meunier J C, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour J L, Guillemot J C, Ferrara P, Monsarrat B, Mazarguil H, Vassart G, Parmentier M, Costentin J.
Isolation and structure of the endogenous antagonist of
opioid receptor-like ORL 1 receptor.
Nature.
1995;
377
532-535
-
82
Millan M J.
Multiple opioid systems and pain: a review.
Pain.
1986;
26
303-349
-
83
Millan M J.
The induction of pain: an integrative review.
Progr in Neurobiol.
1999;
57
1-164
-
84
Montoya P, Ritter K, Huse E, Larbig W, Braun C, Topfner S, Lutzenberger W, Grodd W, Flor H, Birbaumer N.
The cortical somatotopic map and phantom phenomena in
subjects with congenital limb atrophy and traumatic amputees with phantom limb
pain.
Eur J Neurosci.
1998;
10
1095-1102
-
85
Mulder A H.
κ- and δ-opioid receptor agonists differentially
inhibit striatal dopamine and acetylcholine release.
Nature.
1984;
308
278-280
-
86
Newman H M, Stevens R T, Apkarian A V.
Direct spinal projections to limbic and striatal areas:
anterograde transport studies from the upper cervical spinal cord and the
cervical enlargement in squirrel monkey and rat.
J Comp Neurol.
1996;
365
640-685
-
87
Price D D.
Psychological and neural mechanisms of the affective
dimension of pain.
Science.
2000;
288
1769-1772
-
88
Radhakrishnan V, Yashpal K, Hui-Chan C WY, Henry J L.
Implication of a nitric oxide synthase mechanism in the
action of substance P: L-NAME blocks thermal hyperalgesia induced by endogenous
and exogenous substance P in the rat.
Eur J Neurosci.
1995;
7
1920-1925
-
89
Reinscheid R K, Nothacker H P, Bourson A, Ardati A, Henningsen R A, Bunzow J R, Grandy D K, Langen H, Monsma F J Jr, Civelli O.
Orphanin FQ: a neuropeptide that activates an opioidlike G
protein-coupled receptor.
Science.
1995;
270
792-794
-
90
Rexed B.
The cytoarchitectonic organization of the spinal cord in the
rat.
J Comp Neurol.
1952;
96
415-466
-
91
Riedel W.
Warm receptors in the dorsal abdominal wall of the
rabbit.
Pflügers Arch.
1976;
361
205-206
-
92 Riedel W. Temperature homeostasis and redox homeostasis. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (Eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 300-312
-
93
Sann H, Pierau F K.
Efferent functions of C-fiber nociceptors.
Z Rheumatol.
1998;
57 Suppl 2
8-13
-
94
Schadrack J, Zieglgänsberger W.
Pharmacology of pain processing systems.
Z Rheumatol.
1998;
57 Suppl 2
1-4
-
95
Schaible H G, Grubb B D.
Afferent and spinal mechanism of joint pain.
Pain.
1993;
55
5-54
-
96 Schaible H G, Schmidt R F. Neurobiology of articular nociceptors. In: Belmonte C, Cervero F (Eds) Neurobiology of Nociceptors. Oxford; Oxford Univ Press 1996: 202-219
-
97
Schmid H A, Riedel W, Simon E.
Role of nitric oxide in temperature regulation.
Progr Brain Res.
1998;
115
25-49
-
98 Schmidt R F, Thews G, Lang F (Eds). Physiologie des Menschen. Berlin; Springer 2000
-
99
Schmidt R, Schmelz M, Ringkamp M, Handwerker H O, Torebjork H E.
Innervation territories of mechanically activated C
nociceptor units in human skin.
J Neurophysiol.
1997;
78
2641-2648
-
100
Schuman E M, Madison D V.
Nitric oxide and synaptic function.
Annu Rev Neurosci.
1994;
17
153-183
-
101
Sherman S M, Guillery R W.
Functional organization of thalamocortical relays.
J Neurophysiol.
1996;
76
1367-1395
-
102
Simon E.
Temperature regulation: the spinal cord as a site of
extrahypothalamic thermoregulatory functions.
Rev Physiol Biochem Pharmakol.
1974;
71
1-76
-
103
Sinor J D, Boeckman F A, Aizenman E.
Intrinsic redox properties of N-methyl-D-aspartate receptor
can determine the developmental expression of excitotoxicity in rat cortical
neurons in vitro.
Brain Res.
1997;
747
297-303
-
104
Sivilotti L G, Gerber G, Rawat B, Woolf C J.
Morphine selectively depresses the slowest, NMDA-independent
component of C-fiber-evoked synaptic activity in the rat spinal cord in
vitro.
Eur J Neurosci.
1995;
7
12-18
-
105
Snyder S H.
Nitric oxide: First in a new class of neurotransmitters?.
Science.
1992;
257
494-496
-
106
Stamler J S.
Redox signaling: nitrosylation and related target
interactions of nitric oxide.
Cell.
1994;
78
931-936
-
107
Stanfa L, Dickenson A.
Spinal opioid systems in inflammation.
Inflamm Res.
1995;
44
231-241
-
108
Stein C, Machelska H, Schäfer M.
Peripheral analgesic and antiinflammatory effects of
opioids.
Z Rheumatol.
2001;
60
416-424
-
109
Sucher N J, Lipton S A.
Redox modulatory site of the NMDA receptor-channel complex:
regulation by oxidized glutathione.
J Neurosci Res.
1991;
30
582-591
-
110
Tang L H, Aizenman E.
Allosteric modulation of the NMDA receptor by dihydrolipoic
and lipoic acid in rat cortical neurons in vitro.
Neuron.
1993;
11
857-863
-
111 Taylor D CM, Pierau F K. Nociceptive afferent neurones. Manchester; Manchester University Press 1991
-
112
Timpl P, Spanagel R, Sillaber I, Kresse A, Reul J MHM, Stalla G K, Blanquet V, Steckler T, Holsboer F, Wurst W.
Impaired stress response and reduced anxiety in mice lacking
a functional corticotropin-releasing hormone receptor 1.
Nature Genet.
1998;
19
162-166
-
113
Urban L, Thompson S WN, Dray A.
Modulation of spinal excitability: co-operation between
neurokinin and excitatory amino acid neurotransmitters.
Trends Neurosci.
1994;
17
432-438
-
114
Vaughan C W, Christie M J.
Presynaptic inhibitory action of opioids on synaptic
transmission in the rat periaqueductal grey in vitro.
J Physiol (Lond).
1997;
498
463-472
-
115
Wang X, Robinson P J.
Cyclic GMP-dependent protein kinase and cellular signaling in
the nervous system.
J Neurochem.
1997;
68
443-456
-
116
Watkins L R, Cobelli D A, Mayer D J.
Opiate vs non-opiate footshock induced antinociception
(FSIA): descending and intraspinal components.
Brain Res.
1982;
245
97-106
-
117
Watkins L R, Young E G, Kinscheck I B, Mayer D J.
The neural basis of footshock antinociception: The role of
specific ventral medullary nuclei.
Brain Res.
1983;
276
305-315
-
118
Watkins L R, Kinscheck I B, Mayer D J.
The neural basis of footshock antinociception: The effect of
periaqueductal grey lesions and decerebration.
Brain Res.
1983;
276
317-324
-
119
Watkins L R, Johannessen J N, Kinscheck I B, Mayer D J.
The neurochemical basis of footshock antinociception: The
role of spinal cord serotonin and norepinephrine.
Brain Res.
1984;
290
107-117
-
120
Zhang K M, Wang X M, Mokha S S.
Opioids modulate N-methyl-D-aspartatic acid (NMDA)-evoked
responses of neurons in the superficial and deeper dorsal horn of the medulla
(trigeminal nucleus caudalis).
Brain Res.
1996;
719
229-233
Dr. W. Riedel
Max-Planck-Institut für physiologische und klinische
Forschung · W.G. Kerckhoff-Institut
Parkstraße 1 · 61231 Bad Nauheim ·
Phone: 06032-705 259
Fax: 06032-705 211
Email: w.riedel@kerckhoff.mpg.de