References
-
01
Bennett, A.,, Rowe, R. I.,, Soch, N.,, and Eckhert, C. D..
(1999);
Boron stimulates yeast (Saccharomyces cerevisiae).
J. Nutr..
129
2236-2238
-
02
Blevins, D. G., and Lukaszewski, K. M..
(1998);
Boron in plant structure and function.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
49
481-500
-
03
Brown, P. H.,, Bellaloui, N.,, Wimmer, M. A.,, Bassil, E. S.,, Ruiz, J.,, Hu, H.,, Pfeffer, H.,, Dannel, F.,, and Römheld, V..
(2002);
Boron in plant biology.
Plant Biology.
4
211-229
-
04
Brown, P. H., and Shelp, B. J..
(1997);
Boron mobility in plants.
Plant and Soil.
193
85-101
-
05
Cakmak, I.,, Kurz, H.,, and Marschner, H..
(1995);
Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower.
Physiol. Plant..
95
11-18
-
06
Dannel, F.,, Pfeffer, H.,, and Marschner, H..
(1995);
Isolation of apoplasmic fluid from sunflower leaves and its use for studies on influence of nitrogen supply on apoplasmic pH.
J. Plant Physiol..
146
273-278
-
07 Dannel, F.,, Pfeffer, H.,, and Römheld, V.. (1997) Effect of pH and boron concentration in the nutrient solution on translocation of boron in the xylem of sunflower. Boron in soils and plants. Bell, R. W. and Rerkasem, B., eds. Dordrecht, The Netherlands; Kluwer Academic Publishers pp. 183-186
-
08
Dannel, F.,, Pfeffer, H.,, and Römheld, V..
(1998);
Compartmentation of boron in roots and leaves of sunflower as affected by boron supply.
J. Plant Physiol..
153
615-622
-
09
Dannel, F.,, Pfeffer, H.,, and Römheld, V..
(2002);
Update on boron in higher plants - uptake, primary translocation and compartmentation.
Plant Biology.
4
199-210
-
10
Dordas, C., and Brown, P. H..
(2000);
Permeability of boric acid across lipid bilayers and factors affecting it.
J. Membrane Biol..
175
95-105
-
11
Dordas, C.,, Chrispeels, M. J.,, and Brown, P. H..
(2000);
Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots.
Plant Physiol..
124
1349-1361
-
12
Hu, H., and Brown, P. H..
(1997);
Absorption of boron by plant roots.
Plant and Soil.
193
49-58
-
13
Kobayashi, M.,, Matoh, T.,, and Azuma, J.-I..
(1996);
Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls.
Plant Physiol..
110
1017-1020
-
14
Lanoue, L.,, Trollinger, D. R.,, Strong, P. L.,, and Keen, C. L..
(2000);
Functional impairments in preimplantation mouse embryos following boron deficiency.
FASEB J..
14 A
539
-
15
Lohaus, G.,, Pennewiss, K.,, Sattelmacher, B.,, Hussmann, M.,, and Mühling, K. H..
(2001);
Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species.
Physiol. Plant..
111
457-465
-
16 Marschner, H.. (1995) Mineral Nutrition of Higher Plants, Second edition. London; Academic Press p. 380
-
17
Matoh, T., and Kobayashi, M..
(1998);
Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls.
J. Plant Res..
111
179-190
-
18
Nielsen, F. H..
(2000);
The emergence of boron as nutritionally important throughout the life cycle.
Nutrition.
16
512-514
-
19
O'Neill, M. A.,, Eberhard, S.,, Albersheim, P.,, and Darvill, A. G..
(2001);
Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth.
Science.
294
846-849
-
20
O'Neill, M. A.,, Warrenfeltz, D.,, Kates, K.,, Pellerin, P.,, Doco, T.,, Darvill, A. G.,, and Albersheim, P..
(1996);
Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester.
J. Biol. Chem..
271
22923-22930
-
21 Parr, A. J., and Loughman, B. C.. (1983) Boron and membrane function in plants. Metals and micronutrients: uptake and utilization by plants. Robb, D. A. and Pierpoint, W. S. A., eds. New York; Academic Press pp. 87-107
-
22
Pfeffer, H.,, Dannel, F.,, and Römheld, V..
(1999);
Are there two mechanisms for boron uptake in sunflower?.
J. Plant Physiol..
155
34-40
-
23 Pitman, M. G., and Läuchli, A.. (2002) Global impact of salinity and agricultural ecosystems. Salinity: environment - plants - molecules. Läuchli, A. and Lüttge, U., eds. Dordrecht, The Netherlands; Kluwer Academic Publishers in press
-
24
Raven, J. A..
(1980);
Short- and long-distance transport of boric acid in plants.
New Phytol..
84
231-249
-
25
Rowe, R. I., and Eckhert, C. D..
(1999);
Boron is required for zebrafish embryogenesis.
J. Exp. Bot..
202
1649-1654
-
26
Simons, K., and Ikonen, E..
(1997);
Functional rafts in cell membranes.
Nature.
387
569-572
-
27 Wimmer, M. A.,, Mühling, K. H.,, Brown, P. H.,, Läuchli, A.,, and Goldbach, H.. (2001) Interaction of salinity and boron toxicity in wheat (Triticum sativum).
. Plant nutrition, food security and sustainability of agroecosystems. Horst, W. J., ed. Dordrecht, The Netherlands; Kluwer Academic Publishers pp. 426-427
-
28 Wimmer, M. A.,, Mühling, K. H.,, Läuchli, A.,, Brown, P. H.,, and Goldbach, H. E.. (2002) Boron toxicity: the importance of soluble boron. Boron in plant and animal nutrition. Goldbach, H. E., ed. New York; Kluwer Academic/Plenum Publishers in press
A. Läuchli
Department of Land, Air and Water Resources
University of California
One Shields Avenue
Davis, CA 95616-8627
USA
Email: aelauchli@ucdavis.edu
Section Editor: U. Lüttge