References
1a
Hoffmann RW.
Angew. Chem., Int. Ed. Engl.
1982,
21:
555
1b
Yamamoto Y.
Maruyama K.
Heterocycles
1982,
18:
357
1c
Hoffmann R.
W. Angew. Chem., Int. Ed. Engl.
1987,
26:
489
1d
Hoppe D.
Angew. Chem., Int. Ed. Engl.
1984,
23:
932
1e
Mulzer J.
Kattner L.
Strecker AR.
Schröder C.
Buschmann J.
Lehmann C.
Luger P.
J. Am. Chem. Soc.
1991,
113:
4218
For reviews see:
2a
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
2b
Roush WR. In
Comprehensive Organic Chemistry
Vol. 2:
Trost BM.
Pergamon Press;
Oxford:
1991.
p.1-53
2c
Roush WR. In
Houben-Weyl: Methods of Organic Chemistry
Vol. E21b:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1410-1486
For reviews see:
3a
Marshall JA.
Chem. Rev.
1996,
96:
31
3b
Thomas EJ. In
Houben-Weyl: Methods of Organic Chemistry
Vol. E21b:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1508-1540
4 For a review see: Thomas EJ. In
Houben-Weyl: Methods of Chemistry
Vol. E21b:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1491-1507
5
Hafner A.
Duthaler RO.
Marti R.
Rihs G.
Rothe-Streit P.
Schwarzenbach F.
J. Am. Chem. Soc.
1992,
114:
2321
6a
Rainey DP.
Smalley EB.
Crump MH.
Strong FM.
Nature (London)
1965,
205:
203
6b
Aust SD.
Broquist HP.
Nature (London)
1965,
205:
203
7a
Byers JH.
Broquist HP.
J. Dairy. Sci.
1960,
43:
873
7b
Byers JH.
Broquist HP.
J. Dairy. Sci.
1961,
44:
1179
For general reviews see:
8a
Broquist HP.
Annu. Rev. Nutr.
1985,
5:
391-409
8b
Howard AS.
Michael JP. In
The Alkaloids
Vol. 28:
Brossi A.
Academic Press;
New York:
1986.
p.183-308
8c
Elbein AD.
Molyneux RJ. In
Alkaloids: Chemical and Biological Perspectives
Vol. 5:
Pelletier SW.
Wiley;
New York:
1987.
p.1-54
8d
Broquist HP.
Snyder JJ. In
Microbial Toxins
Vol. 7:
Ajl SJ.
Kadis S.
Montie TC.
Academic Press;
New York:
1971.
p.317
8e
Molyneux RJ.
James LF. In
Mycotoxins and Phytoalexins
Sarma RP.
Salunkhe DK.
CRC Press;
Boca Raton FL:
1991.
p.637-656
9
Guengerich FP.
Aust SD.
Mol. Pharmacol.
1977,
13:
185
10 General review: Croom WJ.
Hagler WM.
Froetschel MA.
Johnson AD.
J. Anim. Sci.
1995,
73:
1499
11a
Froetschel MA.
Amos HE.
Evans JJ.
Croom WJ.
Hagler WM.
J. Anim. Sci.
1989,
76:
827
11b
Jacques K.
Harmon DL.
Cromm WJ.
Hagler WM.
J. Dairy. Sci.
1989,
72:
443
12a
Aust SD.
Biochem. Pharmacol.
1969,
18:
929
12b
Aust SD.
Biochem. Pharmacol.
1970,
19:
427
13
Gardiner RA.
Rinehart KL.
Snyder JJ.
Broquist HP.
J. Am. Chem. Soc.
1968,
90:
5639 ; and references cited therein
14a
Guengerich FP.
Broquist HP.
Bioorganic Chemistry
Vol. 2:
van Tamelen EE.
Academic Press;
New York:
1978.
Chap. 4.
14b
Clevenstine EC.
Broquist HP.
Harris TM.
Biochemistry
1979,
18:
3659
14c
Clevenstine EC.
Walter P.
Harris TM.
Broquist HP.
Biochemistry
1979,
18:
3663
14d
Schneider MJ.
Ungemach FS.
Broquist HP.
Harris TM.
J. Am. Chem. Soc.
1982,
104:
6863
14e
Harris CM.
Schneider MJ.
Ungemach FS.
Hill JE.
Harris TM.
J. Am. Chem. Soc.
1988,
110:
940
15a
Cartwright D.
Gardiner RA.
Rinehart KL.
J. Am. Chem. Soc.
1970,
92:
7615
15b
Gensler WJ.
Hu MW.
J. Org. Chem.
1973,
38:
3848
15c
Gobao RA.
Bremmer ML.
Weinreb SM.
J. Am. Chem. Soc.
1982,
104:
7065
15d
Schneider MJ.
Harris TM.
J. Org. Chem.
1984,
49:
3681
15e
Dartmann M.
Flitsch W.
Krebs B.
Pandl K.
Westfechtel A.
Liebigs Ann. Chem.
1988,
695
15f
Shono T.
Matsumura Y.
Katoh S.
Takeuchi K.
Sasaki K.
Kamada T.
Shimizu R.
J. Am. Chem. Soc.
1990,
112:
2368
15g
Wasserman HH.
Vu CB.
Tetrahedron Lett.
1994,
35:
9779
16a
Choi J.-R.
Han S.
Cha JK.
Tetrahedron Lett.
1991,
32:
6469
16b
Pearson WH.
Bergmeier SC.
J. Org. Chem.
1991,
56:
1976
16c
Pearson WH.
Bergmeier SC.
Williams JP.
J. Org. Chem.
1992,
57:
3977
16d
Knapp S.
Gibson FS.
J. Org. Chem.
1992,
57:
4802
16e
Sibi MP.
Christensen JW.
Li B.
Renhowe PA.
J. Org. Chem.
1992,
57:
4329
16f
Knight DW.
Sibley AW.
Tetrahedron Lett.
1993,
34:
6607
16g
Hua DH.
Park J.-G.
Katsuhira T.
Bharathi SN.
J. Org. Chem.
1993,
58:
2144
16h
Gmeiner P.
Junge D.
J. Org. Chem.
1995,
60:
3910
16i
Szeto P.
Lathbury DC.
Gallagher T.
Tetrahedron Lett.
1995,
36:
6957
16j
Knight DW.
Sibley AW.
J. Chem. Soc., Perkin Trans. 1
1997,
2179
16k
Sibi MP.
Christensen JW.
J. Org. Chem.
1999,
64:
6434
16l
Comins DL.
Fulp AB.
Org. Lett.
1999,
1:
1941
16m
Carretero JC.
Arrayas RG.
Synlett
1999,
49
16n
Pourashraf M.
Delair P.
Rasmussen MO.
Greene AE.
J. Org. Chem.
2000,
65:
6966
17
Feng X.
Edstrom E.
Tetrahedron: Asymmetry
1999,
10:
99
18 For a study on the hydroboration of homoallylic alcohols see: Jung ME.
Karama U.
Tetrahedron Lett.
1999,
40:
7907
19 The direct hydroboration of alcohol (+)-2 without silylation of the homoallylic alcohol function (BH3 ·THF then H2 O2 , NaOH) led to the formation of 5 and 5 ′ with an overall yield of 50% and a 60/40 ratio of 5 /5 ′. See ref.
[18 ]
20 Compound (+)-11 ′ was synthesized according to a strategy similar to the one used for obtaining (+)-11 However the deprotection of the PMP group by using CAN produced the decomposition of 11 ′.
Scheme 4
21 (-)-Slaframine was transformed into the more stable N -acetylslaframine (Ac2 O pyridine): [α]D
20 -13.3 (c 0.8, EtOH) {lit.
[16c ]
[α]D
20 -11.2 (c 1.45, EtOH)}; mp 138-140 °C (lit.
[16c ]
mp 139-141 °C); IR (CHCl3 ): 3300, 1730, 1650, 1545, 1440 cm-1 ; 1 H NMR (CDCl3 , 300 MHz) δ = 6.62 (br m, 1 H), 5.25 (ddd, 1 H, J = 7.4, 4.8, 2.2 Hz), 4.21 (dt, 1 H J = 8.5, 2.9 Hz), 3.14-3.02 (m, 2 H), 2.29 (m, 1 H), 2.19 (dd, 1 H, J = 11.4, 2.6 Hz), 2.08 (s, 3 H), 2.00 (s, 3 H), 2.07-1.87 (m, 2 H), 1.81 (m, 1 H), 1.65-1.56 (m, 2 H), 1.48 (m, 1 H); 13 C NMR (CDCl3 , 75 MHz) δ = 170.5 (s), 169.3 (s), 74.4 (d), 67.4 (d), 57.4 (t), 52.9 (t), 43.6 (d), 30.3 (t), 28.0 (t), 23.2 (q), 21.0 (q), 20.3 (t). The physical and spectral data are identical to those reported.
[16c ]
[n ]
22
Groutas WC.
Felker D.
Synthesis
1980,
861